22 research outputs found

    Ability of preoperative falls to predict postsurgical outcomes in non-selected patients undergoing elective surgery at an academic medical centre: Protocol for a prospective cohort study

    Get PDF
    INTRODUCTION: Falls are increasingly recognised for their ability to herald impending health decline. Despite the likely susceptibility of postsurgical patients to falls, a detailed description of postoperative falls in an unselected surgical population has never been performed. One study suggests that preoperative falls may forecast postoperative complications. However, a larger study with non-selected surgical patients and patient-centred outcomes is needed to provide the generalisability and justification necessary to implement preoperative falls assessment into routine clinical practice. The aims of this study are therefore twofold. First, we aim to describe the main features of postoperative falls in a population of unselected surgical patients. Second, we aim to test the hypothesis that a history of falls in the 6 months prior to surgery predicts postoperative falls, poor quality of life, functional dependence, complications and readmission. METHODS AND ANALYSIS: To achieve these goals, we study adult patients who underwent elective surgery at our academic medical centre and were recruited to participate in a prospective, survey-based cohort study called Systematic Assessment and Targeted Improvement of Services Following Yearlong Surgical Outcomes Surveys (SATISFY-SOS) (NCT02032030). Patients who reported falling in the 6 months prior to surgery will be considered ‘exposed.’ The primary outcome of interest is postoperative falls within 30 days of surgery. Secondary outcomes include postoperative functional dependence, quality of life (both physical and mental), in-hospital complications and readmission. Regression models will permit controlling for important confounders. ETHICS AND DISSEMINATION: The home institution's Institutional Review Board approved this study (IRB ID number 201505035). The authors will publish the findings, regardless of the results

    Study protocol for the Anesthesiology Control Tower—Feedback Alerts to Supplement Treatments (ACTFAST-3) trial: A pilot randomized controlled trial in intraoperative telemedicine [version 1; referees: 2 approved]

    Get PDF
    Background: Each year, over 300 million people undergo surgical procedures worldwide. Despite efforts to improve outcomes, postoperative morbidity and mortality are common. Many patients experience complications as a result of either medical error or failure to adhere to established clinical practice guidelines. This protocol describes a clinical trial comparing a telemedicine-based decision support system, the Anesthesiology Control Tower (ACT), with enhanced standard intraoperative care. Methods: This study is a pragmatic, comparative effectiveness trial that will randomize approximately 12,000 adult surgical patients on an operating room (OR) level to a control or to an intervention group. All OR clinicians will have access to decision support software within the OR as a part of enhanced standard intraoperative care. The ACT will monitor patients in both groups and will provide additional support to the clinicians assigned to intervention ORs. Primary outcomes include blood glucose management and temperature management. Secondary outcomes will include surrogate, clinical, and economic outcomes, such as incidence of intraoperative hypotension, postoperative respiratory compromise, acute kidney injury, delirium, and volatile anesthetic utilization. Ethics and dissemination: The ACTFAST-3 study has been approved by the Human Resource Protection Office (HRPO) at Washington University in St. Louis and is registered at clinicaltrials.gov (NCT02830126). Recruitment for this protocol began in April 2017 and will end in December 2018. Dissemination of the findings of this study will occur via presentations at academic conferences, journal publications, and educational materials

    Use of machine learning to develop and evaluate models using preoperative and intraoperative data to identify risks of postoperative complications

    Get PDF
    Importance: Postoperative complications can significantly impact perioperative care management and planning. Objectives: To assess machine learning (ML) models for predicting postoperative complications using independent and combined preoperative and intraoperative data and their clinically meaningful model-agnostic interpretations. Design, Setting, and Participants: This retrospective cohort study assessed 111 888 operations performed on adults at a single academic medical center from June 1, 2012, to August 31, 2016, with a mean duration of follow-up based on the length of postoperative hospital stay less than 7 days. Data analysis was performed from February 1 to September 31, 2020. Main Outcomes and Measures: Outcomes included 5 postoperative complications: acute kidney injury (AKI), delirium, deep vein thrombosis (DVT), pulmonary embolism (PE), and pneumonia. Patient and clinical characteristics available preoperatively, intraoperatively, and a combination of both were used as inputs for 5 candidate ML models: logistic regression, support vector machine, random forest, gradient boosting tree (GBT), and deep neural network (DNN). Model performance was compared using the area under the receiver operating characteristic curve (AUROC). Model interpretations were generated using Shapley Additive Explanations by transforming model features into clinical variables and representing them as patient-specific visualizations. Results: A total of 111 888 patients (mean [SD] age, 54.4 [16.8] years; 56 915 [50.9%] female; 82 533 [73.8%] White) were included in this study. The best-performing model for each complication combined the preoperative and intraoperative data with the following AUROCs: pneumonia (GBT), 0.905 (95% CI, 0.903-0.907); AKI (GBT), 0.848 (95% CI, 0.846-0.851); DVT (GBT), 0.881 (95% CI, 0.878-0.884); PE (DNN), 0.831 (95% CI, 0.824-0.839); and delirium (GBT), 0.762 (95% CI, 0.759-0.765). Performance of models that used only preoperative data or only intraoperative data was marginally lower than that of models that used combined data. When adding variables with missing data as input, AUROCs increased from 0.588 to 0.905 for pneumonia, 0.579 to 0.848 for AKI, 0.574 to 0.881 for DVT, 0.5 to 0.831 for PE, and 0.6 to 0.762 for delirium. The Shapley Additive Explanations analysis generated model-agnostic interpretation that illustrated significant clinical contributors associated with risks of postoperative complications. Conclusions and Relevance: The ML models for predicting postoperative complications with model-agnostic interpretation offer opportunities for integrating risk predictions for clinical decision support. Such real-time clinical decision support can mitigate patient risks and help in anticipatory management for perioperative contingency planning

    Preoperative falls predict postoperative falls, functional decline, and surgical complications

    Get PDF
    AbstractBackgroundFalls are common and linked to morbidity. Our objectives were to characterize postoperative falls, and determine whether preoperative falls independently predicted postoperative falls (primary outcome), functional dependence, quality of life, complications, and readmission.MethodsThis prospective cohort study included 7982 unselected patients undergoing elective surgery. Data were collected from the medical record, a baseline survey, and follow-up surveys approximately 30days and one year after surgery.ResultsFall rates (per 100 person-years) peaked at 175 (hospitalization), declined to 140 (30-day survey), and then to 97 (one-year survey). After controlling for confounders, a history of one, two, and ≥three preoperative falls predicted postoperative falls at 30days (adjusted odds ratios [aOR] 2.3, 3.6, 5.5) and one year (aOR 2.3, 3.4, 6.9). One, two, and ≥three falls predicted functional decline at 30days (aOR 1.2, 2.4, 2.4) and one year (aOR 1.3, 1.5, 3.2), along with in-hospital complications (aOR 1.2, 1.3, 2.0). Fall history predicted adverse outcomes better than commonly-used metrics, but did not predict quality of life deterioration or readmission.ConclusionsFalls are common after surgery, and preoperative falls herald postoperative falls and other adverse outcomes. A history of preoperative falls should be routinely ascertained

    Predicting postoperative troponin in patients undergoing elective hip or knee arthroplasty: A comparison of five cardiac risk prediction tools

    Get PDF
    BACKGROUND: Elderly patients undergoing hip or knee arthroplasty are at a risk for myocardial injury after noncardiac surgery (MINS). We evaluated the ability of five common cardiac risk scores, alone or combined with baseline high-sensitivity cardiac troponin I (hs-cTnI), in predicting MINS and postoperative day 2 (POD2) hs-cTnI levels in patients undergoing elective total hip or knee arthroplasty. METHODS: This study is ancillary to the Genetics-InFormatics Trial (GIFT) of Warfarin Therapy to Prevent Deep Venous Thrombosis, which enrolled patients 65 years and older undergoing elective total hip or knee arthroplasty. The five cardiac risk scores evaluated were the atherosclerotic cardiovascular disease calculator (ASCVD), the Framingham risk score (FRS), the American College of Surgeon\u27s National Surgical Quality Improvement Program (ACS-NSQIP) calculator, the revised cardiac risk index (RCRI), and the reconstructed RCRI (R-RCRI). RESULTS: None of the scores predicted MINS in women. Among men, the ASCVD ( CONCLUSION: In elderly patients undergoing elective hip or knee arthroplasty, several of the scores modestly predicted MINS in men and correlated with POD2 hs-cTnI

    Protocol for the Prognosticating Delirium Recovery Outcomes Using Wakefulness and Sleep Electroencephalography (P-DROWS-E) study: A prospective observational study of delirium in elderly cardiac surgical patients

    Get PDF
    INTRODUCTION: Delirium is a potentially preventable disorder characterised by acute disturbances in attention and cognition with fluctuating severity. Postoperative delirium is associated with prolonged intensive care unit and hospital stay, cognitive decline and mortality. The development of biomarkers for tracking delirium could potentially aid in the early detection, mitigation and assessment of response to interventions. Because sleep disruption has been posited as a contributor to the development of this syndrome, expression of abnormal electroencephalography (EEG) patterns during sleep and wakefulness may be informative. Here we hypothesise that abnormal EEG patterns of sleep and wakefulness may serve as predictive and diagnostic markers for postoperative delirium. Such abnormal EEG patterns would mechanistically link disrupted thalamocortical connectivity to this important clinical syndrome. METHODS AND ANALYSIS: P-DROWS-E (Prognosticating Delirium Recovery Outcomes Using Wakefulness and Sleep Electroencephalography) is a 220-patient prospective observational study. Patient eligibility criteria include those who are English-speaking, age 60 years or older and undergoing elective cardiac surgery requiring cardiopulmonary bypass. EEG acquisition will occur 1-2 nights preoperatively, intraoperatively, and up to 7 days postoperatively. Concurrent with EEG recordings, two times per day postoperative Confusion Assessment Method (CAM) evaluations will quantify the presence and severity of delirium. EEG slow wave activity, sleep spindle density and peak frequency of the posterior dominant rhythm will be quantified. Linear mixed-effects models will be used to evaluate the relationships between delirium severity/duration and EEG measures as a function of time. ETHICS AND DISSEMINATION: P-DROWS-E is approved by the ethics board at Washington University in St. Louis. Recruitment began in October 2018. Dissemination plans include presentations at scientific conferences, scientific publications and mass media. TRIAL REGISTRATION NUMBER: NCT03291626
    corecore