112 research outputs found

    Equilibrium Computation and Robust Optimization in Zero Sum Games with Submodular Structure

    Full text link
    We define a class of zero-sum games with combinatorial structure, where the best response problem of one player is to maximize a submodular function. For example, this class includes security games played on networks, as well as the problem of robustly optimizing a submodular function over the worst case from a set of scenarios. The challenge in computing equilibria is that both players' strategy spaces can be exponentially large. Accordingly, previous algorithms have worst-case exponential runtime and indeed fail to scale up on practical instances. We provide a pseudopolynomial-time algorithm which obtains a guaranteed (1−1/e)2(1 - 1/e)^2-approximate mixed strategy for the maximizing player. Our algorithm only requires access to a weakened version of a best response oracle for the minimizing player which runs in polynomial time. Experimental results for network security games and a robust budget allocation problem confirm that our algorithm delivers near-optimal solutions and scales to much larger instances than was previously possible.Comment: 20 pages, 8 figures. A shorter version of this paper appears at AAAI 201

    Defending Elections Against Malicious Spread of Misinformation

    Full text link
    The integrity of democratic elections depends on voters' access to accurate information. However, modern media environments, which are dominated by social media, provide malicious actors with unprecedented ability to manipulate elections via misinformation, such as fake news. We study a zero-sum game between an attacker, who attempts to subvert an election by propagating a fake new story or other misinformation over a set of advertising channels, and a defender who attempts to limit the attacker's impact. Computing an equilibrium in this game is challenging as even the pure strategy sets of players are exponential. Nevertheless, we give provable polynomial-time approximation algorithms for computing the defender's minimax optimal strategy across a range of settings, encompassing different population structures as well as models of the information available to each player. Experimental results confirm that our algorithms provide near-optimal defender strategies and showcase variations in the difficulty of defending elections depending on the resources and knowledge available to the defender.Comment: Full version of paper accepted to AAAI 201

    Melding the Data-Decisions Pipeline: Decision-Focused Learning for Combinatorial Optimization

    Full text link
    Creating impact in real-world settings requires artificial intelligence techniques to span the full pipeline from data, to predictive models, to decisions. These components are typically approached separately: a machine learning model is first trained via a measure of predictive accuracy, and then its predictions are used as input into an optimization algorithm which produces a decision. However, the loss function used to train the model may easily be misaligned with the end goal, which is to make the best decisions possible. Hand-tuning the loss function to align with optimization is a difficult and error-prone process (which is often skipped entirely). We focus on combinatorial optimization problems and introduce a general framework for decision-focused learning, where the machine learning model is directly trained in conjunction with the optimization algorithm to produce high-quality decisions. Technically, our contribution is a means of integrating common classes of discrete optimization problems into deep learning or other predictive models, which are typically trained via gradient descent. The main idea is to use a continuous relaxation of the discrete problem to propagate gradients through the optimization procedure. We instantiate this framework for two broad classes of combinatorial problems: linear programs and submodular maximization. Experimental results across a variety of domains show that decision-focused learning often leads to improved optimization performance compared to traditional methods. We find that standard measures of accuracy are not a reliable proxy for a predictive model's utility in optimization, and our method's ability to specify the true goal as the model's training objective yields substantial dividends across a range of decision problems.Comment: Full version of paper accepted at AAAI 201

    Sparsification of Social Networks Using Random Walks

    Get PDF
    Analysis of large network datasets has become increasingly important. Algorithms have been designed to find many kinds of structure, with numerous applications across the social and biological sciences. However, a tradeoff is always present between accuracy and scalability; otherwise promising techniques can be computationally infeasible when applied to networks with huge numbers of nodes and edges. One way of extending the reach of network analysis is to sparsify the graph by retaining only a subset of its edges. The reduced network could prove much more tractable. For this thesis, I propose a new sparsification algorithm that preserves the properties of a random walk on the network. Specifically, the algorithm finds a subset of edges that best preserves the stationary distribution of a random walk by minimizing the Kullback-Leibler divergence between a walk on the original and sparsified graphs. A highly efficient greedy search strategy is developed to optimize this objective. Experimental results are presented that test the performance of the algorithm on the influence maximization task. These results demonstrate that sparsification allows near-optimal solutions to be found in a small fraction of the runtime that would required using the full network. Two cases are shown where sparsification allows an influence maximization algorithm to be applied to a dataset that previous work had considered intractable

    Inference of Cultural Transmission Modes Based on Incomplete Information

    Get PDF
    In this paper we explore the theoretical limits of the inference of cultural transmission modes based on sparse population-level data. We approach this problem by investigating whether different transmission modes produce different temporal dynamics of cultural change. In particular we explore whether the distributions of the average time a variant stays the most common variant in the population, denoted by tmax, conditioned on the considered transmission modes are sufficiently different to allow for inference of underlying transmission modes. We assume time series data detailing the frequencies of different variants of a cultural trait in a population at different points in time and investigate the temporal resolution (i.e. the length of the time series and the distance between consecutive time points) that is needed to ensure distinguishability between transmission modes. We find that under complete information most transmission modes can be distinguished on the base of the statistic tmax, however we should not expect the same results if only infrequent information about the most common cultural variant in the population are available
    • …
    corecore