112 research outputs found
Equilibrium Computation and Robust Optimization in Zero Sum Games with Submodular Structure
We define a class of zero-sum games with combinatorial structure, where the
best response problem of one player is to maximize a submodular function. For
example, this class includes security games played on networks, as well as the
problem of robustly optimizing a submodular function over the worst case from a
set of scenarios. The challenge in computing equilibria is that both players'
strategy spaces can be exponentially large. Accordingly, previous algorithms
have worst-case exponential runtime and indeed fail to scale up on practical
instances. We provide a pseudopolynomial-time algorithm which obtains a
guaranteed -approximate mixed strategy for the maximizing player.
Our algorithm only requires access to a weakened version of a best response
oracle for the minimizing player which runs in polynomial time. Experimental
results for network security games and a robust budget allocation problem
confirm that our algorithm delivers near-optimal solutions and scales to much
larger instances than was previously possible.Comment: 20 pages, 8 figures. A shorter version of this paper appears at AAAI
201
Defending Elections Against Malicious Spread of Misinformation
The integrity of democratic elections depends on voters' access to accurate
information. However, modern media environments, which are dominated by social
media, provide malicious actors with unprecedented ability to manipulate
elections via misinformation, such as fake news. We study a zero-sum game
between an attacker, who attempts to subvert an election by propagating a fake
new story or other misinformation over a set of advertising channels, and a
defender who attempts to limit the attacker's impact. Computing an equilibrium
in this game is challenging as even the pure strategy sets of players are
exponential. Nevertheless, we give provable polynomial-time approximation
algorithms for computing the defender's minimax optimal strategy across a range
of settings, encompassing different population structures as well as models of
the information available to each player. Experimental results confirm that our
algorithms provide near-optimal defender strategies and showcase variations in
the difficulty of defending elections depending on the resources and knowledge
available to the defender.Comment: Full version of paper accepted to AAAI 201
Melding the Data-Decisions Pipeline: Decision-Focused Learning for Combinatorial Optimization
Creating impact in real-world settings requires artificial intelligence
techniques to span the full pipeline from data, to predictive models, to
decisions. These components are typically approached separately: a machine
learning model is first trained via a measure of predictive accuracy, and then
its predictions are used as input into an optimization algorithm which produces
a decision. However, the loss function used to train the model may easily be
misaligned with the end goal, which is to make the best decisions possible.
Hand-tuning the loss function to align with optimization is a difficult and
error-prone process (which is often skipped entirely).
We focus on combinatorial optimization problems and introduce a general
framework for decision-focused learning, where the machine learning model is
directly trained in conjunction with the optimization algorithm to produce
high-quality decisions. Technically, our contribution is a means of integrating
common classes of discrete optimization problems into deep learning or other
predictive models, which are typically trained via gradient descent. The main
idea is to use a continuous relaxation of the discrete problem to propagate
gradients through the optimization procedure. We instantiate this framework for
two broad classes of combinatorial problems: linear programs and submodular
maximization. Experimental results across a variety of domains show that
decision-focused learning often leads to improved optimization performance
compared to traditional methods. We find that standard measures of accuracy are
not a reliable proxy for a predictive model's utility in optimization, and our
method's ability to specify the true goal as the model's training objective
yields substantial dividends across a range of decision problems.Comment: Full version of paper accepted at AAAI 201
Sparsification of Social Networks Using Random Walks
Analysis of large network datasets has become increasingly important. Algorithms have been designed to find many kinds of structure, with numerous applications across the social and biological sciences. However, a tradeoff is always present between accuracy and scalability; otherwise promising techniques can be computationally infeasible when applied to networks with huge numbers of nodes and edges. One way of extending the reach of network analysis is to sparsify the graph by retaining only a subset of its edges. The reduced network could prove much more tractable. For this thesis, I propose a new sparsification algorithm that preserves the properties of a random walk on the network. Specifically, the algorithm finds a subset of edges that best preserves the stationary distribution of a random walk by minimizing the Kullback-Leibler divergence between a walk on the original and sparsified graphs. A highly efficient greedy search strategy is developed to optimize this objective. Experimental results are presented that test the performance of the algorithm on the influence maximization task. These results demonstrate that sparsification allows near-optimal solutions to be found in a small fraction of the runtime that would required using the full network. Two cases are shown where sparsification allows an influence maximization algorithm to be applied to a dataset that previous work had considered intractable
Inference of Cultural Transmission Modes Based on Incomplete Information
In this paper we explore the theoretical limits of the inference of cultural transmission modes based on sparse population-level data. We approach this problem by investigating whether different transmission modes produce different temporal dynamics of cultural change. In particular we explore whether the distributions of the average time a variant stays the most common variant in the population, denoted by tmax, conditioned on the considered transmission modes are sufficiently different to allow for inference of underlying transmission modes. We assume time series data detailing the frequencies of different variants of a cultural trait in a population at different points in time and investigate the temporal resolution (i.e. the length of the time series and the distance between consecutive time points) that is needed to ensure distinguishability between transmission modes. We find that under complete information most transmission modes can be distinguished on the base of the statistic tmax, however we should not expect the same results if only infrequent information about the most common cultural variant in the population are available
- …