40 research outputs found
Radiating dipoles in photonic crystals
The radiation dynamics of a dipole antenna embedded in a Photonic Crystal are
modeled by an initially excited harmonic oscillator coupled to a non--Markovian
bath of harmonic oscillators representing the colored electromagnetic vacuum
within the crystal. Realistic coupling constants based on the natural modes of
the Photonic Crystal, i.e., Bloch waves and their associated dispersion
relation, are derived. For simple model systems, well-known results such as
decay times and emission spectra are reproduced. This approach enables direct
incorporation of realistic band structure computations into studies of
radiative emission from atoms and molecules within photonic crystals. We
therefore provide a predictive and interpretative tool for experiments in both
the microwave and optical regimes.Comment: Phys. Rev. E, accepte
Symmetry characterization of eigenstates in opal-based photonic crystals
The complete symmetry characterization of eigenstates in bare opal systems is
obtained by means of group theory. This symmetry assignment has allowed us to
identify several bands that cannot couple with an incident external plane wave.
Our prediction is supported by layer-KKR calculations, which are also
performed: the coupling coefficients between bulk modes and externally excited
field tend to zero when symmetry properties mismatch.Comment: 7 pages, 5 figures, submitted to Physical Review
Photonic band gaps in materials with triply periodic surfaces and related tubular structures
We calculate the photonic band gap of triply periodic bicontinuous cubic
structures and of tubular structures constructed from the skeletal graphs of
triply periodic minimal surfaces. The effect of the symmetry and topology of
the periodic dielectric structures on the existence and the characteristics of
the gaps is discussed. We find that the C(I2-Y**) structure with Ia3d symmetry,
a symmetry which is often seen in experimentally realized bicontinuous
structures, has a photonic band gap with interesting characteristics. For a
dielectric contrast of 11.9 the largest gap is approximately 20% for a volume
fraction of the high dielectric material of 25%. The midgap frequency is a
factor of 1.5 higher than the one for the (tubular) D and G structures
Preparation of photonic crystals made of air spheres in titania
Three-dimensional crystals of air spheres in titania (TiO
2
) with radii between 120 and 1000 nanometers were made by filling the voids in artificial opals by precipitation from a liquid-phase chemical reaction and subsequently removing the original opal material by calcination. These macroporous materials are a new class of photonic band gap crystals for the optical spectrum. Scanning electron microscopy, Raman spectroscopy, and optical microscopy confirm the quality of the samples, and optical reflectivity demonstrates that the crystals are strongly photonic and near that needed to exhibit band gap behavior.
</jats:p