203 research outputs found

    Extracting first science measurements from the southern detector of the Pierre Auger observatory

    Full text link
    The world's largest cosmic-ray detector is nearing completion in the remote Pampas of Argentina. This instrument measures extensive air-showers with energies from 10181020{10^{18}-10^{20}} eV and beyond. A surface detector array of area 3000 km2{km^2} records the lateral distribution of charged particles at ground level. A fluorescence detector overlooking the surface detector records the longitudinal light profiles of showers in the atmosphere to make a calorimetric energy measurement. A ``test beam'' for the fluorescence detector is generated by a calibrated laser near the array center. This talk will focus on detector characterizations essential to the first science results that have been reported from the observatory. Plans to construct a larger instrument in the northern hemisphere will also be outlined.Comment: 4 pages, 5 figures submitted to 10th Pisa meeting on advanced detector

    Knot Theory: from Fox 3-colorings of links to Yang-Baxter homology and Khovanov homology

    Full text link
    This paper is an extended account of my "Introductory Plenary talk at Knots in Hellas 2016" conference We start from the short introduction to Knot Theory from the historical perspective, starting from Heraclas text (the first century AD), mentioning R.Llull (1232-1315), A.Kircher (1602-1680), Leibniz idea of Geometria Situs (1679), and J.B.Listing (student of Gauss) work of 1847. We spend some space on Ralph H. Fox (1913-1973) elementary introduction to diagram colorings (1956). In the second section we describe how Fox work was generalized to distributive colorings (racks and quandles) and eventually in the work of Jones and Turaev to link invariants via Yang-Baxter operators, here the importance of statistical mechanics to topology will be mentioned. Finally we describe recent developments which started with Mikhail Khovanov work on categorification of the Jones polynomial. By analogy to Khovanov homology we build homology of distributive structures (including homology of Fox colorings) and generalize it to homology of Yang-Baxter operators. We speculate, with supporting evidence, on co-cycle invariants of knots coming from Yang-Baxter homology. Here the work of Fenn-Rourke-Sanderson (geometric realization of pre-cubic sets of link diagrams) and Carter-Kamada-Saito (co-cycle invariants of links) will be discussed and expanded. Dedicated to Lou Kauffman for his 70th birthday.Comment: 35 pages, 31 figures, for Knots in Hellas II Proceedings, Springer, part of the series Proceedings in Mathematics & Statistics (PROMS

    The Central Laser Facility at the Pierre Auger Observatory

    Full text link
    The Central Laser Facility is located near the middle of the Pierre Auger Observatory in Argentina. It features a UV laser and optics that direct a beam of calibrated pulsed light into the sky. Light scattered from this beam produces tracks in the Auger optical detectors which normally record nitrogen fluorescence tracks from cosmic ray air showers. The Central Laser Facility provides a "test beam" to investigate properties of the atmosphere and the fluorescence detectors. The laser can send light via optical fiber simultaneously to the nearest surface detector tank for hybrid timing analyses. We describe the facility and show some examples of its many uses.Comment: 4 pages, 5 figures, submitted to 29th ICRC Pune Indi

    EUSO-SPB2 Fluorescence Telescope Calibration and Field Tests

    Full text link
    The Extreme Universe Space Observatory on a Super Pressure Balloon 2 (EUSO-SPB2), successfully launched from Wanaka, New Zealand on May 13, 2022, is a precursor for a space-based astroparticle observatory such as the Probe Of Extreme Multi-Messenger Astrophysics (POEMMA). EUSO-SPB2 flew two custom telescopes. Both have UV/UV-visible sensitivity and feature Schmidt optics. The Fluorescence Telescope (FT) measures ultra-high energy cosmic rays by looking down. The \v{C}erenkov Telescope (CT) searches for neutrino signatures by looking toward Earth's limb. The two telescopes each have a 1 m diameter entrance pupil and segmented glass mirrors that collect light from extensive air showers at the PeV and EeV-scale. Here we describe the FT telescope optics together with the results of the FT field tests at the Utah Telescope Array (TA) site from August/September 2022. The FT recorded the night sky background, lasers, and artificial point sources. The field tests included an absolute photometric calibration of the FT telescope that is compared to a piece-wise laboratory calibration

    Atmospheric Calorimetry above 1019^{19} eV: Shooting Lasers at the Pierre Auger Cosmic-Ray Observatory

    Full text link
    The Pierre Auger Cosmic-Ray Observatory uses the earth's atmosphere as a calorimeter to measure extensive air-showers created by particles of astrophysical origin. Some of these particles carry joules of energy. At these extreme energies, test beams are not available in the conventional sense. Yet understanding the energy response of the observatory is important. For example, the propagation distance of the highest energy cosmic-rays through the cosmic microwave background radiation (CMBR) is predicted to be strong function of energy. This paper will discuss recently reported results from the observatory and the use of calibrated pulsed UV laser "test-beams" that simulate the optical signatures of ultra-high energy cosmic rays. The status of the much larger 200,000 km3^3 companion detector planned for the northern hemisphere will also be outlined.Comment: 6 pages, 11 figures XIII International Conference on Calorimetry in High Energy Physic
    corecore