113 research outputs found

    Gauge freedom for Gravitational Wave problems in tensor-scalar theories of gravity

    Get PDF
    A specific choice of gauge is shown to imply a decoupling between the tensor and scalar components of Gravitational Radiation in the context of Brans-Dicke type theories of gravitation. The comparison of the predictions of these theories with those of General Relativity is thereby made straightforward.Comment: 11 pages, no figur

    Compressed sensing for radio interferometric imaging: review and future direction

    Get PDF
    Radio interferometry is a powerful technique for astronomical imaging. The theory of Compressed Sensing (CS) has been applied recently to the ill-posed inverse problem of recovering images from the measurements taken by radio interferometric telescopes. We review novel CS radio interferometric imaging techniques, both at the level of acquisition and reconstruction, and discuss their superior performance relative to traditional approaches. In order to remain as close to the theory of CS as possible, these techniques necessarily consider idealised interferometric configurations. To realise the enhancement in quality provided by these novel techniques on real radio interferometric observations, their extension to realistic interferometric configurations is now of considerable importance. We also chart the future direction of research required to achieve this goal.Comment: 4 pages, 4 figures, Proceedings of IEEE International Conference on Image Processing (ICIP) 201

    On the computation of directional scale-discretized wavelet transforms on the sphere

    Get PDF
    We review scale-discretized wavelets on the sphere, which are directional and allow one to probe oriented structure in data defined on the sphere. Furthermore, scale-discretized wavelets allow in practice the exact synthesis of a signal from its wavelet coefficients. We present exact and efficient algorithms to compute the scale-discretized wavelet transform of band-limited signals on the sphere. These algorithms are implemented in the publicly available S2DW code. We release a new version of S2DW that is parallelized and contains additional code optimizations. Note that scale-discretized wavelets can be viewed as a directional generalization of needlets. Finally, we outline future improvements to the algorithms presented, which can be achieved by exploiting a new sampling theorem on the sphere developed recently by some of the authors.Comment: 13 pages, 3 figures, Proceedings of Wavelets and Sparsity XV, SPIE Optics and Photonics 2013, Code is publicly available at http://www.s2dw.org

    Complex data processing: fast wavelet analysis on the sphere

    Get PDF
    In the general context of complex data processing, this paper reviews a recent practical approach to the continuous wavelet formalism on the sphere. This formalism notably yields a correspondence principle which relates wavelets on the plane and on the sphere. Two fast algorithms are also presented for the analysis of signals on the sphere with steerable wavelets.Comment: 20 pages, 5 figures, JFAA style, paper invited to J. Fourier Anal. and Appli

    Compressed sensing for wide-field radio interferometric imaging

    Full text link
    For the next generation of radio interferometric telescopes it is of paramount importance to incorporate wide field-of-view (WFOV) considerations in interferometric imaging, otherwise the fidelity of reconstructed images will suffer greatly. We extend compressed sensing techniques for interferometric imaging to a WFOV and recover images in the spherical coordinate space in which they naturally live, eliminating any distorting projection. The effectiveness of the spread spectrum phenomenon, highlighted recently by one of the authors, is enhanced when going to a WFOV, while sparsity is promoted by recovering images directly on the sphere. Both of these properties act to improve the quality of reconstructed interferometric images. We quantify the performance of compressed sensing reconstruction techniques through simulations, highlighting the superior reconstruction quality achieved by recovering interferometric images directly on the sphere rather than the plane.Comment: 15 pages, 8 figures, replaced to match version accepted by MNRA

    Alignment and signed-intensity anomalies in WMAP data

    Get PDF
    Significant alignment and signed-intensity anomalies of local features of the cosmic microwave background (CMB) are detected on the three-year WMAP data, through a decomposition of the signal with steerable wavelets on the sphere. Firstly, an alignment analysis identifies two mean preferred planes in the sky, both with normal axes close to the CMB dipole axis. The first plane is defined by the directions toward which local CMB features are anomalously aligned. A mean preferred axis is also identified in this plane, located very close to the ecliptic poles axis. The second plane is defined by the directions anomalously avoided by local CMB features. This alignment anomaly provides further insight on recent results (Wiaux et al. 2006). Secondly, a signed-intensity analysis identifies three mean preferred directions in the southern galactic hemisphere with anomalously high or low temperature of local CMB features: a cold spot essentially identified with a known cold spot (Vielva et al. 2004), a second cold spot lying very close to the southern end of the CMB dipole axis, and a hot spot lying close to the southern end of the ecliptic poles axis. In both analyses, the anomalies are observed at wavelet scales corresponding to angular sizes around 10 degress on the celestial sphere, with global significance levels around 1%. Further investigation reveals that the alignment and signed-intensity anomalies are only very partially related. Instrumental noise, foreground emissions, as well as some form of other systematics, are strongly rejected as possible origins of the detections. An explanation might still be envisaged in terms of a global violation of the isotropy of the Universe, inducing an intrinsic statistical anisotropy of the CMB.Comment: 12 pages, 7 figures. Accepted for publication in MNRAS. Small changes made (including the new subsection 3.4) to match the final versio

    Steerable wavelet analysis of CMB structures alignment

    Get PDF
    This paper reviews the application of a novel methodology for analysing the isotropy of the universe by probing the alignment of local structures in the CMB. The strength of the proposed methodology relies on the steerable wavelet filtering of the CMB signal. One the one hand, the filter steerability renders the computation of the local orientation of the CMB features affordable in terms of computation time. On the other hand, the scale-space nature of the wavelet filtering allows to explore the alignment of the local structures at different scales, probing possible different phenomena. We present the WMAP first-year data analysis recently performed by the same authors (Wiaux et al.), where an extremely significant anisotropy was found. In particular, a preferred plane was detected, having a normal direction with a northern end position close to the northern end of the CMB dipole axis. In addition, a most preferred direction was found in that plane, with a northern end direction very close to the north ecliptic pole. This result synthesised for the first time previously reported anomalies identified in the direction of the dipole and the ecliptic poles axes. In a forthcoming paper (Vielva et al.), we have extended our analysis to the study of individual frequency maps finding first indications for discarding foregrounds as the origin of the anomaly. We have also tested that the preferred orientations are defined by structures homogeneously distributed in the sky, rather than from localised regions. We have also analysed the WMAP 3-year data, finding the same anomaly pattern, although at a slightly lower significance level.Comment: 14 pages, 8 figures. Proceedings of the Fundamental Physics With CMB workshop, UC Irvine, March 23-25, 2006, to be published in New Astronomy Review

    S2LET: A code to perform fast wavelet analysis on the sphere

    Get PDF
    We describe S2LET, a fast and robust implementation of the scale-discretised wavelet transform on the sphere. Wavelets are constructed through a tiling of the harmonic line and can be used to probe spatially localised, scale-depended features of signals on the sphere. The scale-discretised wavelet transform was developed previously and reduces to the needlet transform in the axisymmetric case. The reconstruction of a signal from its wavelets coefficients is made exact here through the use of a sampling theorem on the sphere. Moreover, a multiresolution algorithm is presented to capture all information of each wavelet scale in the minimal number of samples on the sphere. In addition S2LET supports the HEALPix pixelisation scheme, in which case the transform is not exact but nevertheless achieves good numerical accuracy. The core routines of S2LET are written in C and have interfaces in Matlab, IDL and Java. Real signals can be written to and read from FITS files and plotted as Mollweide projections. The S2LET code is made publicly available, is extensively documented, and ships with several examples in the four languages supported. At present the code is restricted to axisymmetric wavelets but will be extended to directional, steerable wavelets in a future release.Comment: 8 pages, 6 figures, version accepted for publication in A&A. Code is publicly available from http://www.s2let.or

    Fast directional correlation on the sphere with steerable filters

    Get PDF
    A fast algorithm is developed for the directional correlation of scalar band-limited signals and band-limited steerable filters on the sphere. The asymptotic complexity associated to it through simple quadrature is of order O(L^5), where 2L stands for the square-root of the number of sampling points on the sphere, also setting a band limit L for the signals and filters considered. The filter steerability allows to compute the directional correlation uniquely in terms of direct and inverse scalar spherical harmonics transforms, which drive the overall asymptotic complexity. The separation of variables technique for the scalar spherical harmonics transform produces an O(L^3) algorithm independently of the pixelization. On equi-angular pixelizations, a sampling theorem introduced by Driscoll and Healy implies the exactness of the algorithm. The equi-angular and HEALPix implementations are compared in terms of memory requirements, computation times, and numerical stability. The computation times for the scalar transform, and hence for the directional correlation, of maps of several megapixels on the sphere (L~10^3) are reduced from years to tens of seconds in both implementations on a single standard computer. These generic results for the scale-space signal processing on the sphere are specifically developed in the perspective of the wavelet analysis of the cosmic microwave background (CMB) temperature (T) and polarization (E and B) maps of the WMAP and Planck experiments. As an illustration, we consider the computation of the wavelet coefficients of a simulated temperature map of several megapixels with the second Gaussian derivative wavelet.Comment: Version accepted in APJ. 14 pages, 2 figures, Revtex4 (emulateapj). Changes include (a) a presentation of the algorithm as directly built on blocks of standard spherical harmonics transforms, (b) a comparison between the HEALPix and equi-angular implementation
    • …
    corecore