1,110 research outputs found
Photoassociation spectra and the validity of the dipole approximation for weakly bound dimers
Photoassociation (PA) of ultracold metastable helium to the 2s2p manifold is
theoretically investigated using a non-perturbative close-coupled treatment in
which the laser coupling is evaluated without assuming the dipole
approximation. The results are compared with our previous study [Cocks and
Whittingham, Phys. Rev. A 80, 023417 (2009)] that makes use of the dipole
approximation. The approximation is found to strongly affect the PA spectra
because the photoassociated levels are weakly bound, and a similar impact is
predicted to occur in other systems of a weakly bound nature. The inclusion or
not of the approximation does not affect the resonance positions or widths,
however significant differences are observed in the background of the spectra
and the maximum laser intensity at which resonances are discernable. Couplings
not satisfying the dipole selection rule |J-1| <= J' <= |J+1| do not lead to
observable resonances.Comment: 5 pages, 2 figures; Minor textual revision
Symmetry improvement of 3PI effective actions for O(N) scalar field theory
[Abridged] n-Particle Irreducible Effective Actions (PIEA) are a powerful
tool for extracting non-perturbative and non-equilibrium physics from quantum
field theories. Unfortunately, practical truncations of PIEA can
unphysically violate symmetries. Pilaftsis and Teresi (PT) addressed this by
introducing a "symmetry improvement" scheme in the context of the 2PIEA for an
O(2) scalar theory, ensuring that the Goldstone boson is massless in the broken
symmetry phase [A. Pilaftsis and D. Teresi, Nuc.Phys. B 874, 2 (2013), pp.
594--619]. We extend this by introducing a symmetry improved 3PIEA for O(N)
theories, for which the basic variables are the 1-, 2- and 3-point correlation
functions. This requires the imposition of a Ward identity involving the
3-point function. The method leads to an infinity of physically distinct
schemes, though an analogue of d'Alembert's principle is used to single out a
unique scheme. The standard equivalence hierarchy of PIEA no longer holds
with symmetry improvement and we investigate the difference between the
symmetry improved 3PIEA and 2PIEA. We present renormalized equations of motion
and counter-terms for 2 and 3 loop truncations of the effective action, leaving
their numerical solution to future work. We solve the Hartree-Fock
approximation and find that our method achieves a middle ground between the
unimproved 2PIEA and PT methods. The phase transition predicted by our method
is weakly first order and the Goldstone theorem is satisfied. We also show
that, in contrast to PT, the symmetry improved 3PIEA at 2 loops does not
predict the correct Higgs decay rate, but does at 3 loops. These results
suggest that symmetry improvement should not be applied to PIEA truncated to
loops. We also show that symmetry improvement is compatible with the
Coleman-Mermin-Wagner theorem, a check on the consistency of the formalism.Comment: 27 pages, 15 figures, 2 supplemental Mathematica notebooks. REVTeX
4.1 with amsmath. Updated with minor corrections. Accepted for publication in
Phys. Rev.
Laser Intensity Dependence of Photoassociation in Ultracold Metastable Helium
Photoassociation of spin-polarized metastable helium to the three lowest
rovibrational levels of the J=1, state asymptoting to 2SP is studied using a second-order perturbative
treatment of the line shifts valid for low laser intensities, and two variants
of a non-perturbative close-coupled treatment, one based upon dressed states of
the matter plus laser system, and the other on a modified radiative coupling
which vanishes asymptotically, thus simulating experimental conditions. These
non-perturbative treatments are valid for arbitrary laser intensities and yield
the complete photoassociation resonance profile. Both variants give nearly
identical results for the line shifts and widths of the resonances and show
that their dependence upon laser intensity is very close to linear and
quadratic respectively for the two lowest levels. The resonance profiles are
superimposed upon a significant background loss, a feature for this metastable
helium system not present in studies of photoassociation in other systems,
which is due to the very shallow nature of the excited state potential.
The results for the line shifts from the close-coupled and perturbative
calculations agree very closely at low laser intensities.Comment: 14 pages, 7 figures, title altered, text reduce
Purely-long-range bound states of HeHe
We predict the presence and positions of purely-long-range bound states of
HeHe near the atomic
limits. The results of the full multichannel and approximate models are
compared, and we assess the sensitivity of the bound states to atomic
parameters characterizing the potentials. Photoassociation to these
purely-long-range molecular bound states may improve the knowledge of the
scattering length associated with the collisions of two ultracold
spin-polarized He atoms, which is important for studies of
Bose-Einstein condensates.Comment: 16 pages, 5 figure
Additively manufactured rotating disk electrodes and experimental setup
This manuscript details the first report of a complete additively manufactured rotating disk electrode setup, highlighting how high-performing equipment can be designed and produced rapidly using additive manufacturing without compromising on performance. The additively manufactured rotating disk electrode system was printed using a predominantly acrylonitrile butadiene styrene (ABS) based filament and used widely available, low-cost electronics, and simplified machined parts to create. The additively manufactured rotating disk electrode system costs less than 2% of a comparable commercial solution (£84.47 ($102.26) total). The rotating disk electrode is also additively manufactured using a carbon black/polylactic acid (CB/PLA) equivalent, developing a completely additively manufactured rotating disk electrode system. The electrochemical characterization of the additively manufactured rotating disk electrode setup was performed using hexaamineruthenium(III) chloride and compared favorably with a commercial glassy carbon electrode. Finally, this work shows how the additively manufactured rotating disk electrode experimental system and additive manufactured electrodes can be utilized for the electroanalytical determination of levodopa, a drug used in the treatment of Parkinson's disease, producing a limit of detection of 0.23 ± 0.03 μM. This work represents a step-change in how additive manufacturing can be used in research, allowing the production of high-end equipment for hugely reduced costs, without compromising on performance. Utilizing additive manufacturing in this way could greatly enhance the research possibilities for less well-funded research groups
Enhancing patient and public contribution in health outcome selection during clinical guideline development: an ethnographic study
Background
Patient and public involvement (PPI) is a cornerstone in enhancing healthcare research and delivery, including clinical guideline development. Health outcomes concern changes in the health status of an individual or population that are attributable to an intervention. Discussion of relevant health outcomes impacts the resulting clinical guidelines for practice. This study explores how the input of PPI contributors at the National Institute of Health and Care Excellence (NICE) is integrated into guideline development, particularly in relation to health outcome selection.
Methods
The study used an ethnographic methodological approach. Data comprised: observations of committee meetings, scoping workshops and training sessions, and in-depth interviews with PPI contributors, health professionals and chairs from clinical guideline development committees. Data were analysed thematically.
Results
PPI contributors’ input in the guideline development process was often of limited scope, particularly in selecting health outcomes. Key constraints on their input included: the technical content and language of guidelines, assumed differences in the health-related priorities between PPI contributors and health professionals, and the linear timeline of the guideline development process. However, PPI contributors can influence clinical guideline development including the selection of relevant health outcomes. This was achieved through several factors and highlights the important role of the committee chair, the importance of training and support for all committee members, the use of plain language and the opportunity for all committee members to engage.
Conclusions
Lay member input during the outcome selection phase of clinical guideline development is achievable, but there are challenges to overcome. Study findings identify ways that future guideline developers can support meaningful lay involvement in guideline development and health outcome selection
Multi-walled carbon nanotubes/carbon black/rPLA for high-performance conductive additive manufacturing filament and the simultaneous detection of acetaminophen and phenylephrine
The combination of multi-walled carbon nanotubes (MWCNT) and carbon black (CB) is presented to produce a high-performance electrically conductive recycled additive manufacturing filament. The filament and subsequent additively manufactured electrodes were characterised by TGA, XPS, Raman, and SEM and showed excellent low-temperature flexibility. The MWCNT/CB filament exhibited an improved electrochemical performance compared to an identical in-house produced bespoke filament using only CB. A heterogeneous electrochemical rate constant,
of 1.71 (± 0.19) × 10−3 cm s−1 was obtained, showing an almost six times improvement over the commonly used commercial conductive CB/PLA. The filament was successfully tested for the simultaneous determination of acetaminophen and phenylephrine, producing linear ranges of 5–60 and 5–200 μM, sensitivities of 0.05 μA μM−1 and 0.14 μA μM−1, and limits of detection of 0.04 μM and 0.38 μM, respectively. A print-at-home device is presented where a removable lid comprised of rPLA can be placed onto a drinking vessel and the working, counter, and reference components made from our bespoke MWCNT/CB filament. The print-at-home device was successfully used to determine both compounds within real pharmaceutical products, with recoveries between 87 and 120% over a range of three real samples. This work paves the way for fabricating new highly conductive filaments using a combination of carbon materials with different morphologies and physicochemical properties and their application to produce additively manufactured electrodes with greatly improved electrochemical performance
Defining the remarkable structural malleability of a bacterial surface protein Rib domain implicated in infection
Streptococcus groups A and B cause serious infections, including early onset sepsis and meningitis in newborns. Rib domain-containing surface proteins are found associated with invasive strains and elicit protective immunity in animal models. Yet, despite their apparent importance in infection, the structure of the Rib domain was previously unknown. Structures of single Rib domains of differing length reveal a rare case of domain atrophy through deletion of 2 core antiparallel strands, resulting in the loss of an entire sheet of the β-sandwich from an immunoglobulin-like fold. Previously, observed variation in the number of Rib domains within these bacterial cell wall-attached proteins has been suggested as a mechanism of immune evasion. Here, the structure of tandem domains, combined with molecular dynamics simulations and small angle X-ray scattering, suggests that variability in Rib domain number would result in differential projection of an N-terminal host-colonization domain from the bacterial surface. The identification of 2 further structures where the typical B-D-E immunoglobulin β-sheet is replaced with an α-helix further confirms the extensive structural malleability of the Rib domain
Building development and roads: implications for the distribution of stone curlews across the Brecks
Background: Substantial new housing and infrastructure development planned within England has the potential to conflict with the nature conservation interests of protected sites. The Breckland area of eastern England (the Brecks) is designated as a Special Protection Area for a number of bird species, including the stone curlew (for which it holds more than 60% of the UK total population). We explore the effect of buildings and roads on the spatial distribution of stone curlew nests across the Brecks in order to inform strategic development plans to avoid adverse effects on such European protected sites. Methodology: Using data across all years (and subsets of years) over the period 1988 – 2006 but restricted to habitat areas of arable land with suitable soils, we assessed nest density in relation to the distances to nearest settlements and to major roads. Measures of the local density of nearby buildings, roads and traffic levels were assessed using normal kernel distance-weighting functions. Quasi-Poisson generalised linear mixed models allowing for spatial auto-correlation were fitted. Results: Significantly lower densities of stone curlew nests were found at distances up to 1500m from settlements, and distances up to 1000m or more from major (trunk) roads. The best fitting models involved optimally distance-weighted variables for the extent of nearby buildings and the trunk road traffic levels. Significance : The results and predictions from this study of past data suggests there is cause for concern that future housing development and associated road infrastructure within the Breckland area could have negative impacts on the nesting stone curlew population. Given the strict legal protection afforded to the SPA the planning and conservation bodies have subsequently agreed precautionary restrictions on building development within the distances identified and used the modelling predictions to agree mitigation measures for proposed trunk road developments
- …