51 research outputs found

    Electrospun Fibrinogen-Polydioxanone Composite Matrix: Potential for In Situ Urologic Tissue Engineering

    Get PDF
    Our objective is to demonstrate an electrospun fibrinogen-PDO (polydioxanone) composite scaffold will retain the superior cellular interaction of fibrinogen while producing a product with the functional strength needed for direct implantation. Fibrinogen-PDO composite scaffolds were electrospun with PDO ratios of 0% (pure fibrinogen), 10%, 20%, 30%, 40%, 50% and 100% (pure PDO) and disinfected using standard methods. Scaffolds were seeded with human BSM (bladder smooth muscle cells) and incubated with twice weekly media changes. Samples were removed at 7, 14 and 21 days for evaluation by collagen assay, scanning electron microscopy and histology. Cell seeding and culture demonstrated human BSM readily migrate throughout and remodel electrospun fibrinogen-PDO composite scaffolds with deposition of native collagen. Cell migration and collagen deposition increased with increasing fibrinogen concentration while scaffold integrity increased with increasing PDO concentration. Electrospun fibrinogen-PDO composite structures promote rapid cellular in-growth by human BSM while maintaining structural integrity. The fibrinogen to PDO ratio can be adjusted to achieve the desired properties required for a specific tissue engineering application. Our ultimate objective is to utilize this innovative biomaterial technology to produce an acellular, bioresorbable product that enables in situ tissue regeneration. While there is still much work to be done, these initial findings indicate fibrinogen-PDO composite scaffolds deserve further investigation

    The global gas and dust budget of the Large Magellanic Cloud: AGB stars and supernovae and the impact on the ISM evolution

    Get PDF
    ‘The definitive version is available at: www3.interscience.wiley.com '. Copyright Blackwell / Royal Astronomical Society. DOI: 10.1111/j.1365-2966.2009.14743.xWe report on an analysis of the gas and dust budget in the interstellar medium (ISM) of the Large Magellanic Cloud (LMC). Recent observations from the Spitzer Space Telescope enable us to study the mid-infrared dust excess of asymptotic giant branch (AGB) stars in the LMC. This is the first time we can quantitatively assess the gas and dust input from AGB stars over a complete galaxy, fully based on observations. The integrated mass-loss rate over all intermediate and high mass-loss rate carbon-rich AGB candidates in the LMC is 8.5 × 10−3 M⊙ yr−1 , up to 2.1 × 10−2 M⊙ yr−1 . This number could be increased up to 2.7 × 10−2 M⊙ yr−1 if oxygen-rich stars are included. This is overall consistent with theoretical expectations, considering the star formation rate (SFR) when these low- and intermediate-mass stars where formed, and the initial mass functions. AGB stars are one of the most important gas sources in the LMC, with supernovae (SNe), which produces about 2–4 × 10−2 M⊙ yr−1 . At the moment, the SFR exceeds the gas feedback from AGB stars and SNe in the LMC, and the current star formation depends on gas already present in the ISM. This suggests that as the gas in the ISM is exhausted, the SFR will eventually decline in the LMC, unless gas is supplied externally. Our estimates suggest 'a missing dust-mass problem' in the LMC, which is similarly found in high-z galaxies: the accumulated dust mass from AGB stars and possibly SNe over the dust lifetime (400–800 Myr) is significant less than the dust mass in the ISM. Another dust source is required, possibly related to star-forming regions.Peer reviewe

    Horizontal Branch Stars: The Interplay between Observations and Theory, and Insights into the Formation of the Galaxy

    Full text link
    We review HB stars in a broad astrophysical context, including both variable and non-variable stars. A reassessment of the Oosterhoff dichotomy is presented, which provides unprecedented detail regarding its origin and systematics. We show that the Oosterhoff dichotomy and the distribution of globular clusters (GCs) in the HB morphology-metallicity plane both exclude, with high statistical significance, the possibility that the Galactic halo may have formed from the accretion of dwarf galaxies resembling present-day Milky Way satellites such as Fornax, Sagittarius, and the LMC. A rediscussion of the second-parameter problem is presented. A technique is proposed to estimate the HB types of extragalactic GCs on the basis of integrated far-UV photometry. The relationship between the absolute V magnitude of the HB at the RR Lyrae level and metallicity, as obtained on the basis of trigonometric parallax measurements for the star RR Lyrae, is also revisited, giving a distance modulus to the LMC of (m-M)_0 = 18.44+/-0.11. RR Lyrae period change rates are studied. Finally, the conductive opacities used in evolutionary calculations of low-mass stars are investigated. [ABRIDGED]Comment: 56 pages, 22 figures. Invited review, to appear in Astrophysics and Space Scienc

    SHINE Transcription Factors Act Redundantly to Pattern the Archetypal Surface of Arabidopsis Flower Organs

    Get PDF
    Floral organs display tremendous variation in their exterior that is essential for organogenesis and the interaction with the environment. This diversity in surface characteristics is largely dependent on the composition and structure of their coating cuticular layer. To date, mechanisms of flower organ initiation and identity have been studied extensively, while little is known regarding the regulation of flower organs surface formation, cuticle composition, and its developmental significance. Using a synthetic microRNA approach to simultaneously silence the three SHINE (SHN) clade members, we revealed that these transcription factors act redundantly to shape the surface and morphology of Arabidopsis flowers. It appears that SHNs regulate floral organs' epidermal cell elongation and decoration with nanoridges, particularly in petals. Reduced activity of SHN transcription factors results in floral organs' fusion and earlier abscission that is accompanied by a decrease in cutin load and modified cell wall properties. SHN transcription factors possess target genes within four cutin- and suberin-associated protein families including, CYP86A cytochrome P450s, fatty acyl-CoA reductases, GSDL-motif lipases, and BODYGUARD1-like proteins. The results suggest that alongside controlling cuticular lipids metabolism, SHNs act to modify the epidermis cell wall through altering pectin metabolism and structural proteins. We also provide evidence that surface formation in petals and other floral organs during their growth and elongation or in abscission and dehiscence through SHNs is partially mediated by gibberellin and the DELLA signaling cascade. This study therefore demonstrates the need for a defined composition and structure of the cuticle and cell wall in order to form the archetypal features of floral organs surfaces and control their cell-to-cell separation processes. Furthermore, it will promote future investigation into the relation between the regulation of organ surface patterning and the broader control of flower development and biological functions

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Cross-linking Electrospun Polydioxanone-Soluble Elastin Blends: Material Characterization

    No full text
    The purpose of this study was to establish whether material properties of elastin co-electrospun with polydioxanone (PDO) would change over time in both the uncross-linked state and the cross-linked state. First, uncross-linked scaffolds were placed in phosphate buffered saline (PBS) for three separate time periods: 15 minutes, 1 hour, and 24 hours, and subsequently tested using uniaxial materials testing. Several cross-linking reagents were then investigated to verify their ability to crosslink elastin: 1-ethyl-3-(dimethylaminopropyl)-carbodiimide (EDC), ethylene glycol diglycidyl ether (EGDE), and genipin. Uniaxial tensile testing was performed on scaffolds cross-linked with EDC and genipin, yielding results that warranted further investigation for PDO-elastin blends. Material properties of the cross-linked scaffolds were then found within range of both pig femoral artery and human femoral artery. These results demonstrate PDO-elastin blends could potentially be favorable as vascular grafts, thus warranting future in vitro and in vivo studies
    corecore