626 research outputs found

    Brain Dynamics across levels of Organization

    Get PDF
    After presenting evidence that the electrical activity recorded from the brain surface can reflect metastable state transitions of neuronal configurations at the mesoscopic level, I will suggest that their patterns may correspond to the distinctive spatio-temporal activity in the Dynamic Core (DC) and the Global Neuronal Workspace (GNW), respectively, in the models of the Edelman group on the one hand, and of Dehaene-Changeux, on the other. In both cases, the recursively reentrant activity flow in intra-cortical and cortical-subcortical neuron loops plays an essential and distinct role. Reasons will be given for viewing the temporal characteristics of this activity flow as signature of Self-Organized Criticality (SOC), notably in reference to the dynamics of neuronal avalanches. This point of view enables the use of statistical Physics approaches for exploring phase transitions, scaling and universality properties of DC and GNW, with relevance to the macroscopic electrical activity in EEG and EMG

    Dynamics of entanglement between two trapped atoms

    Get PDF
    We investigate the dynamics of entanglement between two continuous variable quantum systems. The model system consists of two atoms in a harmonic trap which are interacting by a simplified s-wave scattering. We show, that the dynamically created entanglement changes in a steplike manner. Moreover, we introduce local operators which allow us to violate a Bell-CHSH inequality adapted to the continuous variable case. The correlations show nonclassical behavior and almost reach the maximal quantum mechanical value. This is interesting since the states prepared by this interaction are very different from any EPR-like state.Comment: 9 page

    Entangled light in transition through the generation threshold

    Full text link
    We investigate continuous variable entangling resources on the base of two-mode squeezing for all operational regimes of a nondegenerate optical parametric oscillator with allowance for quantum noise of arbitrary level. The results for the quadrature variances of a pair of generated modes are obtained by using the exact steady-state solution of Fokker-Planck equation for the complex P-quasiprobability distribution function. We find a simple expression for the squeezed variances in the near-threshold range and conclude that the maximal two-mode squeezing reaches 50% relative to the level of vacuum fluctuations and is achieved at the pump field intensity close to the generation threshold. The distinction between the degree of two-mode squeezing for monostable and bistable operational regimes is cleared up.Comment: 7 pages, 4 figures; Content changed: more details added to the discussion. To be published in Phys. Rev.

    Commonland: The AlVelAl Project

    Get PDF
    The case is about a Dutch organisation, Commonland which scouts, launches, and manages business-driven landscape restoration projects. In 2014 it started a new landscape restoration project in the Southern region of Spain in an area that covers 630,000 hectares of land spanning across three municipalities; Alt

    Effects of selected South African plant extracts on haemolysis and coagulation

    Get PDF
    The use of herbal preparations for staunching blood flow and reducing the risk of vascular thrombosis is common worldwide. In this study, aqueous and methanolic extracts of plants used to treat blood-associated complaints were investigated to determine their effects on red blood cell haemolysis and coagulation. The extent of haemolysis was determined spectrophotometrically. Prothrombin time (PT) and activated partial thromboplastin time (aPTT) as indicators of coagulation rate were determined using a coagulatometer. All of the plant extracts tested had a significant effect on coagulation time, prolonging the aPTT. Cassia petersiana had the greatest prolonging effect on PT compared to the control, phosphate buffered saline (PBS). As all of the herbal extracts tested had a delaying effect on coagulation, patients using herbal/plant therapies should be cautioned to stop their medication before surgery.The University of Pretoria, Department of Pharmacology.http://het.sagepub.co

    Photon-photon correlations and entanglement in doped photonic crystals

    Full text link
    We consider a photonic crystal (PC) doped with four-level atoms whose intermediate transition is coupled near-resonantly with a photonic band-gap edge. We show that two photons, each coupled to a different atomic transition in such atoms, can manifest strong phase or amplitude correlations: One photon can induce a large phase shift on the other photon or trigger its absorption and thus operate as an ultrasensitive nonlinear photon-switch. These features allow the creation of entangled two-photon states and have unique advantages over previously considered media: (i) no control lasers are needed; (ii) the system parameters can be chosen to cause full two-photon entanglement via absorption; (iii) a number of PCs can be combined in a network.Comment: Modified, expanded text; added reference

    Test for entanglement using physically observable witness operators and positive maps

    Full text link
    Motivated by the Peres-Horodecki criterion and the realignment criterion we develop a more powerful method to identify entangled states for any bipartite system through a universal construction of the witness operator. The method also gives a new family of positive but non-completely positive maps of arbitrary high dimensions which provide a much better test than the witness operators themselves. Moreover, we find there are two types of positive maps that can detect 2xN and 4xN bound entangled states. Since entanglement witnesses are physical observables and may be measured locally our construction could be of great significance for future experiments.Comment: 6 pages, 1 figure, revtex4 styl

    Entanglement, Mixedness, and Spin-Flip Symmetry in Multiple-Qubit Systems

    Full text link
    A relationship between a recently introduced multipartite entanglement measure, state mixedness, and spin-flip symmetry is established for any finite number of qubits. It is also shown that, within those classes of states invariant under the spin-flip transformation, there is a complementarity relation between multipartite entanglement and mixedness. A number of example classes of multiple-qubit systems are studied in light of this relationship.Comment: To appear in Physical Review A; submitted 14 May 200

    A device for feasible fidelity, purity, Hilbert-Schmidt distance and entanglement witness measurements

    Full text link
    A generic model of measurement device which is able to directly measure commonly used quantum-state characteristics such as fidelity, overlap, purity and Hilbert-Schmidt distance for two general uncorrelated mixed states is proposed. In addition, for two correlated mixed states, the measurement realizes an entanglement witness for Werner's separability criterion. To determine these observables, the estimation only one parameter - the visibility of interference, is needed. The implementations in cavity QED, trapped ion and electromagnetically induced transparency experiments are discussed.Comment: 6 pages, 3 figure
    corecore