532 research outputs found

    Computation of theoretical brightness temperatures corresponding to the Cape Cod Canal radiometer measurements

    Get PDF
    Theoretical brightness temperatures are computed from the ground-truth data that was collected during the radiometer measurements of the Cape Cod Canal. An approximate correction for antenna pattern effects is made, and the results are compared with the radiometer measurements

    Radar backscattering from a sea having an anisotropic large-scale surface, part 2

    Get PDF
    A two scale scattering model was derived that combines specular reflections from sea waves and Bragg scattering in a manner consistent with energy conservation. The effect of the tilting of the small scale roughness by the large scale roughness was included, which accounted for the reduction of reflected power. The special case of backscattering for which the transmitted polarization equaled the received polarization was considered. An anisotropic large scale surface was used to specify the probability density function of the large scale surface normal. In order to isolate the azimuthal variation of the normalized radar cross section produced by the anisotropic probability density function, an isotropical small scale spectrum was assumed

    New algorithms for microwave measurements of ocean winds

    Get PDF
    Improved second generation wind algorithms are used to process the three month SEASAT SMMR and SASS data sets. The new algorithms are derived without using in situ anemometer measurements. All known biases in the sensors prime measurements are removed, and the algorithms prime model functions are internally self-consistent. The computed SMMR and SASS winds are collocated and compared on a 150 km cell-by-cell basis, giving a total of 115444 wind comparisons. The comparisons are done using three different sets of SMMR channels. When the 6.6H SMMR channel is used for wind retrieval, the SMMR and SASS winds agree to within 1.3 m/s over the SASS primary swath. At nadir where the radar cross section is less sensitive to wind, the agreement degrades to 1.9 m/s. The agreement is very good for winds from 0 to 15 m/s. Above 15 m/s, the off-nadir SASS winds are consistently lower than the SMMR winds, while at nadir the high SASS winds are greater than SMMR's. When 10.7H is used for the SMMR wind channel, the SMMR/SASS wind comparisons are not quite as good. When the frequency of the wind channel is increased to 18 GHz, the SMMR/SASS agreement substantially degrades to about 5 m/s

    Study of blood flow sensing with microwave radiometry

    Get PDF
    A study and experimental investigation has been performed to determine the feasibility of measuring regional blood flow and volume in man by means of microwave radiometry. An indication was expected of regional blood flow from measurement of surface and subsurface temperatures with a sensitive radiometer. Following theoretical modeling of biological tissue, to determine the optimum operating frequency for adequate sensing depth, a sensitive microwave radiometer was designed for operation at 793 MHz. A temperature sensitivity of of 0.06 K rms was realized in this equipment. Measurements performed on phantom tissue models, consisting of beef fat and lean beefsteak showed that the radiometer was capable of sensing temperatures from a depth between 3.8 and 5.1 cm. Radiometric and thermodynamic temperature measurements were also performed on the hind thighs of large dogs. These showed that the radiometer could sense subsurface temperatures from a depth of, at least, 1.3 cm. Delays caused by externally-generated RF interference, coupled with the lack of reliable blood flow measurement equipment, prevented correlation of radiometer readings with reginal blood flow. For the same reasons, it was not possible to extend the radiometric observations to human subjects

    The Effect of Sea-Surface Sun Glitter on Microwave Radiometer Measurements

    Get PDF
    A relatively simple model for the microwave brightness temperature of sea surface Sun glitter is presented. The model is an accurate closeform approximation for the fourfold Sun glitter integral. The model computations indicate that Sun glitter contamination of on orbit radiometer measurements is appreciable over a large swath area. For winds near 20 m/s, Sun glitter affects the retrieval of environmental parameters for Sun angles as large as 20 to 25 deg. The model predicted biases in retrieved wind speed and sea surface temperature due to neglecting Sun glitter are consistent with those experimentally observed in SEASAT SMMR retrievals. A least squares retrieval algorithm that uses a combined sea and Sun model function shows the potential of retrieving accurate environmental parameters in the presence of Sun glitter so long as the Sun angles and wind speed are above 5 deg and 2 m/s, respectively

    A two-scale scattering model with application to the JONSWAP '75 aircraft microwave scatterometer experiment

    Get PDF
    The general problem of bistatic scattering from a two scale surface was evaluated. The treatment was entirely two-dimensional and in a vector formulation independent of any particular coordinate system. The two scale scattering model was then applied to backscattering from the sea surface. In particular, the model was used in conjunction with the JONSWAP 1975 aircraft scatterometer measurements to determine the sea surface's two scale roughness distributions, namely the probability density of the large scale surface slope and the capillary wavenumber spectrum. Best fits yield, on the average, a 0.7 dB rms difference between the model computations and the vertical polarization measurements of the normalized radar cross section. Correlations between the distribution parameters and the wind speed were established from linear, least squares regressions

    Estimation of the sea surface's two-scale backscatter parameters

    Get PDF
    The relationship between the sea-surface normalized radar cross section and the friction velocity vector is determined using a parametric two-scale scattering model. The model parameters are found from a nonlinear maximum likelihood estimation. The estimation is based on aircraft scatterometer measurements and the sea-surface anemometer measurements collected during the JONSWAP '75 experiment. The estimates of the ten model parameters converge to realistic values that are in good agreement with the available oceanographic data. The rms discrepancy between the model and the cross section measurements is 0.7 db, which is the rms sum of a 0.3 db average measurement error and a 0.6 db modeling error

    Custo de um surto de pleuropneumonia suína.

    Get PDF
    bitstream/item/84803/1/DCOT-095.pd

    Aquarius: The Instrument and Initial Results

    Get PDF
    Aquarius was launched on June 10, 2011 aboard the Aquarius/SAC-D observatory and the instrument has been operating continuously since the initial turned-on was completed on August 25. The initial observed antenna temperatures were close to predicted and the first salinity map was released in September. In order to map the ocean salinity field, Aquarius includes several special features such as the inclusion of a scatterometer to provide a roughness correction, measurement of the third Stokes parameter to correct for Faraday rotation, and fast sampling to mitigate the effects of RFI. This paper provides an overview of the instrument and an example of initial results. Details are covered in subsequent papers in the session on Aquariu
    corecore