1,383 research outputs found
Predicting TEM Cell Measurements from Near Field Scan Data
A procedure is proposed for predicting TEM cell measurements from near field scans by modeling near-field scan data using equivalent sources. The first step in this procedure is to measure the tangential electric and magnetic fields over the circuit. Electric and magnetic fields are estimated from probe measurements by compensating for the characteristics of the probe. An equivalent magnetic and electric current model representing emissions is then generated from the compensated fields. These equivalent sources are used as an impressed source in an analytical formula or full wave simulation to predict measurements within the TEM cell. Experimental verification of the procedure using a microstrip trace and clock buffer show that values measured in the TEM cell and calculated from near field scan data agree within a few decibels from 1 MHz to 1 GHz
Recommended from our members
Increasing impacts of extreme droughts on vegetation productivity under climate change
Terrestrial gross primary production (GPP) is the basis of vegetation growth and food production globally1 and plays a critical role in regulating atmospheric CO2 through its impact on ecosystem carbon balance. Even though higher CO2 concentrations in future decades can increase GPP2, low soil water availability, heat stress and disturbances associated with droughts could reduce the benefits of such CO2 fertilization. Here we analysed outputs of 13 Earth system models to show an increasingly stronger impact on GPP by extreme droughts than by mild and moderate droughts over the twenty-first century. Due to a dramatic increase in the frequency of extreme droughts, the magnitude of globally averaged reductions in GPP associated with extreme droughts was projected to be nearly tripled by the last quarter of this century (2075–2099) relative to that of the historical period (1850–1999) under both high and intermediate GHG emission scenarios. By contrast, the magnitude of GPP reductions associated with mild and moderate droughts was not projected to increase substantially. Our analysis indicates a high risk of extreme droughts to the global carbon cycle with atmospheric warming; however, this risk can be potentially mitigated by positive anomalies of GPP associated with favourable environmental conditions
Estimation of High-Frequency Currents from Near-Field Scan Measurements
High-frequency currents on the pins of integrated circuits (ICs) and on printed circuit board (PCB) traces are needed to predict and analyze electromagnetic interference in high-speed devices. These currents can, however, be difficult to measure when traces are buried within the PCB or chip-package, especially when several current-carrying traces are in close proximity. Techniques for estimating high-frequency currents from near-field scan data are proposed in this paper. These techniques are applied to find currents on the pins of an IC, on traces buried beneath other traces in a PCB, and on traces over a slot in the ground plane. Methods of dealing with the ill-posed nature of the current-estimation problem are discussed, as are applications to electrically large structures. A study of the sensitivity of the technique to errors in the measured fields, errors in the circuit geometry, and errors in the estimated dielectric constant of the PCB or chip package show that, for reasonable errors in these parameters, currents can be estimated to within an average of 20% (1.6 dB) or less of their correct values
Estimation of Current from Near-Field Measurement
Knowledge of high-frequency currents in the chip and chip-package are necessary for EMI analysis and prediction, though measurement of these currents may be difficult to obtain in many cases. One possibility is to estimate currents from near-field scan data. In this paper, measurements were made of the magnetic field over a simple circuit and a chip package. The current flowing in the circuit and the chip lead frame was estimated from the compensated near-field data and compared with measurements made directly on the pins. Estimation was performed both with and without structural information of the lead frame. The susceptibility of estimated currents to measurement errors was analyzed. Results show this technique can be a powerful tool for analyzing high frequency chip currents
(μ-4-Methylbenzenethiolato-κ2 S:S)bis[carbonyl(η5-cyclopentadienyl)molybdenum(II)]
The asymmetric unit of the title compound, [Mo2(C5H5)2(C7H7S)2(CO)2], consists of two half-molecules, each molecule lying on a centre of symmetry. The thiolate groups function as bridges between the MoII atoms, which adopt a quasi-octahedral geometry. In the octahedral environment the two ligating S atoms are in a cis arrangement
A NOVEL ANTIBACTERIAL RESIN COMPOSITE CONTAINING QUATERNARY AMMONIUM SALTS
poster abstractObjectives: The objective of this study was to synthesize new quater-nary ammonium bromide (QAB)-containing oligomers, incorporate them to dental resin composites, and evaluate the effects of these new oligo-mers on the mechanical strength and antibacterial activity of the formed composites. Methods: The novel quaternary ammonium bromide (QAB)-containing oligomers were synthesized and applied for developing an an-tibacterial resin composite. Compressive strength (CS) and S. mutans (an oral bacteria strain) viability were used to evaluate the mechanical strength and antibacterial activity of the formed composites. Results: All the QAB-modified resin composites showed significant antibacterial activi-ty and mechanical strength reduction. Increasing chain length and loading significantly enhanced the antibacterial activity but dramatically reduced the CS. The 30-day aging study showed that the incorporation of the QAB accelerated the degradation of the composite, suggesting that the QAB may not be well suitable for development of antibacterial dental resin composites or at least the QAB loading should be well controlled, unlike its use in dental glass-ionomer cements. Conclusions: The work in this study is beneficial and valuable to those who are interested in studying antibacterial dental resin composites
In the face of climate change and exhaustive exercise: the physiological response of an important recreational fish species
Cobia (Rachycentron canadum) support recreational fisheries along the US mid- and south-Atlantic states and have been recently subjected to increased fishing effort, primarily during their spawning season in coastal habitats where increasing temperatures and expanding hypoxic zones are occurring due to climate change. We therefore undertook a study to quantify the physiological abilities of cobia to withstand increases in temperature and hypoxia, including their ability to recover from exhaustive exercise. Respirometry was conducted on cobia from Chesapeake Bay to determine aerobic scope, critical oxygen saturation, ventilation volume and the time to recover from exhaustive exercise under temperature and oxygen conditions projected to be more common in inshore areas by the middle and end of this century. Cobia physiologically tolerated predicted mid- and end-of-century temperatures (28–32°C) and oxygen concentrations as low as 1.7–2.4 mg l−1. Our results indicated cobia can withstand environmental fluctuations that occur in coastal habitats and the broad environmental conditions their prey items can tolerate. However, at these high temperatures, some cobia did suffer post-exercise mortality. It appears cobia will be able to withstand near-future climate impacts in coastal habitats like Chesapeake Bay, but as conditions worsen, catch-and-release fishing may result in higher mortality than under present conditions
- …