69 research outputs found
Metabolic pathway engineering for production of 1,2-propanediol and 1-propanol by Corynebacterium glutamicum
Siebert D, Wendisch VF. Metabolic pathway engineering for production of 1,2-propanediol and 1-propanol by Corynebacterium glutamicum. Biotechnology for Biofuels. 2015;8(1): 91.Background
Production of the versatile bulk chemical 1,2-propanediol and the potential biofuel 1-propanol is still dependent on petroleum, but some approaches to establish bio-based production from renewable feed stocks and to avoid toxic intermediates have been described. The biotechnological workhorse Corynebacterium glutamicum has also been shown to be able to overproduce 1,2-propanediol by metabolic engineering. Additionally, C. glutamicum has previously been engineered for production of the biofuels ethanol and isobutanol but not for 1-propanol.
Results
In this study, the improved production of 1,2-propanediol by C. glutamicum is presented. The product yield of a C. glutamicum strain expressing the heterologous genes gldA and mgsA from Escherichia coli that encode methylglyoxal synthase gene and glycerol dehydrogenase, respectively, was improved by additional expression of alcohol dehydrogenase gene yqhD from E. coli leading to a yield of 0.131 mol/mol glucose. Deletion of the endogenous genes hdpA and ldh encoding dihydroxyacetone phosphate phosphatase and lactate dehydrogenase, respectively, prevented formation of glycerol and lactate as by-products and improved the yield to 0.343 mol/mol glucose. To construct a 1-propanol producer, the operon ppdABC from Klebsiella oxytoca encoding diol dehydratase was expressed in the improved 1,2-propanediol producing strain ending up with 12 mM 1-propanol and up to 60 mM unconverted 1,2-propanediol. Thus, B 12 -dependent diol dehydratase activity may be limiting 1-propanol production.
Conclusions
Production of 1,2-propanediol by C. glutamicum was improved by metabolic engineering targeting endogenous enzymes. Furthermore, to the best of our knowledge, production of 1-propanol by recombinant C. glutamicum was demonstrated for the first time
Complete genome sequence of Paenibacillus riograndensis SBR5T, a Gram-positive diazotrophic rhizobacterium
AbstractPaenibacillus riograndensis is a Gram-positive rhizobacterium which exhibits plant growth promoting activities. It was isolated from the rhizosphere of wheat grown in the state of Rio Grande do Sul, Brazil. Here we announce the complete genome sequence of P. riograndensis strain SBR5T. The genome of P. riograndensis SBR5T consists of a circular chromosome of 7,893,056bps. The genome was finished and fully annotated, containing 6705 protein coding genes, 87 tRNAs and 27 rRNAs. The knowledge of the complete genome helped to explain why P. riograndensis SBR5T can grow with the carbon sources arabinose and mannitol, but not myo-inositol, and to explain physiological features such as biotin auxotrophy and antibiotic resistances. The genome sequence will be valuable for functional genomics and ecological studies as well as for application of P. riograndensis SBR5T as plant growth-promoting rhizobacterium
Recommended from our members
Detrainment Dominates CCN Concentrations Around Non-Precipitating Convective Clouds Over the Amazon
We investigated the relationship between the number concentration of cloud droplets (Nd) in ice-free convective clouds and of particles large enough to act as cloud condensation nuclei (CCN) measured at the lateral boundaries of cloud elements. The data were collected during the ACRIDICON-CHUVA aircraft campaign over the Amazon Basin. The results indicate that the CCN particles at the lateral cloud boundaries are dominated by detrainment from the cloud. The CCN concentrations detrained from non-precipitating convective clouds are smaller compared to below cloud bases. The detrained CCN particles from precipitating cloud volumes have relatively larger sizes, but lower concentrations. Our findings indicate that CCN particles ingested from below cloud bases are activated into cloud droplets, which evaporate at the lateral boundaries and above cloud base and release the CCN again to ambient cloud-free air, after some cloud processing. These results support the hypothesis that the CCN around the cloud are cloud-processed
Monkeypox in-patients with severe anal pain
Berlin is amongst the cities most affected by the current monkeypox outbreak. Here, we report clinical characteristics of the first patients with confirmed monkeypox admitted to our center. We analyzed anamnestic, clinical, and laboratory data. Within a period of 2 weeks, six patients were hospitalized in our unit. All were MSM and had practiced condomless receptive anal intercourse in the weeks preceding admission. The chief complaint in all patients but one was severe anal pain unprecedented in severity. Investigations revealed proctitis, as well as anal and rectal ulcers with detection of monkeypox virus. Our findings support the hypothesis that sexual transmission plays a role in the current outbreak
Further evidence for CCN aerosol concentrations determining the height of warm rain and ice initiation in convective clouds over the Amazon basin
We have investigated how aerosols affect the height above cloud base of rain and ice hydrometeor Initiation and the subsequent vertical evolution of cloud droplet size and number concentrations in growing convective cumulus. For this purpose we used in situ data of hydrometeor size distributions measured with instruments mounted on HALO aircraft during the ACRIDICON CHUVA campaign over the Amazon during September 2014. The results show that the height of rain initiation by collision and coalescence processes is linearly correlated with the number concentration of droplets nucleated at cloud base
Detrainment Dominates CCN Concentrations Around Non Precipitating Convective Clouds Over the Amazon
We investigated the relationship between the number concentration of cloud droplets (Nd) in ice-free convective clouds and of particles large enough to act as cloud condensation nuclei (CCN) measured at the lateral boundaries of cloud elements. The data were collected during the ACRIDICON CHUVA aircraft campaign over the Amazon Basin. The results indicate that the CCN particles at the lateral cloud boundaries are dominated by detrainment from the cloud
Chassis organism from Corynebacterium glutamicum – a top-down approach to identify and delete irrelevant gene clusters
Unthan S, Baumgart M, Radek A, et al. Chassis organism from Corynebacterium glutamicum – a top-down approach to identify and delete irrelevant gene clusters. Biotechnology Journal. 2015;10(2):290-301
Constraining the Twomey effect from satellite observations: issues and perspectives
The Twomey effect describes the radiative forcing
associated with a change in cloud albedo due to an increase
in anthropogenic aerosol emissions. It is driven by the perturbation
in cloud droplet number concentration (1Nd; ant)
in liquid-water clouds and is currently understood to exert
a cooling effect on climate. The Twomey effect is the key
driver in the effective radiative forcing due to aerosol–cloud
interactions, but rapid adjustments also contribute. These
adjustments are essentially the responses of cloud fraction
and liquid water path to 1Nd; ant and thus scale approximately
with it. While the fundamental physics of the influence
of added aerosol particles on the droplet concentration
(Nd) is well described by established theory at the particle
scale (micrometres), how this relationship is expressed at the
large-scale (hundreds of kilometres) perturbation, 1Nd; ant,
remains uncertain. The discrepancy between process understanding
at particle scale and insufficient quantification at
the climate-relevant large scale is caused by co-variability of
aerosol particles and updraught velocity and by droplet sink
processes. These operate at scales on the order of tens of metres at which only localised observations are available and at
which no approach yet exists to quantify the anthropogenic
perturbation. Different atmospheric models suggest diverse
magnitudes of the Twomey effect even when applying the
same anthropogenic aerosol emission perturbation. Thus, observational
data are needed to quantify and constrain the
Twomey effect. At the global scale, this means satellite data.
There are four key uncertainties in determining 1Nd; ant,
namely the quantification of (i) the cloud-active aerosol – the
cloud condensation nuclei (CCN) concentrations at or above
cloud base, (ii) Nd, (iii) the statistical approach for inferring
the sensitivity of Nd to aerosol particles from the satellite
data and (iv) uncertainty in the anthropogenic perturbation
to CCN concentrations, which is not easily accessible from
observational data. This review discusses deficiencies of current
approaches for the different aspects of the problem and
proposes several ways forward: in terms of CCN, retrievals
of optical quantities such as aerosol optical depth suffer from
a lack of vertical resolution, size and hygroscopicity information,
non-direct relation to the concentration of aerosols,
difficulty to quantify it within or below clouds, and the problem
of insufficient sensitivity at low concentrations, in addition
to retrieval errors. A future path forward can include
utilising co-located polarimeter and lidar instruments, ideally
including high-spectral-resolution lidar capability at two
wavelengths to maximise vertically resolved size distribution
information content. In terms of Nd, a key problem is the lack
of operational retrievals of this quantity and the inaccuracy of
the retrieval especially in broken-cloud regimes. As for the
Nd-to-CCN sensitivity, key issues are the updraught distributions
and the role of Nd sink processes, for which empirical
assessments for specific cloud regimes are currently the best
solutions. These considerations point to the conclusion that past studies using existing approaches have likely underestimated
the true sensitivity and, thus, the radiative forcing due
to the Twomey effect
Further evidence for CCN aerosol concentrations determining the height of warm rain and ice initiation in convective clouds over the Amazon basin
We have investigated how aerosols affect the height above cloud base of rain and ice hydrometeor Initiation and the subsequent vertical evolution of cloud droplet size and number concentrations in growing convective cumulus. For this purpose we used in situ data of hydrometeor size distributions measured with instruments mounted on HALO aircraft during the ACRIDICON CHUVA campaign over the Amazon during September 2014. The results show that the height of rain initiation by collision and coalescence processes is linearly correlated with the number concentration of droplets nucleated at cloud base
Cloud droplet number closure for tropical convective clouds during the ACRIDICON CHUVA campaign
The main objective of the ACRIDICON-CHUVA campaign in September 2014 was the investigation of aerosol-cloud-interactions in the Amazon Basin. Cloud properties near cloud base of growing convective cumuli were characterized by cloud droplet size distribution measurements using a cloud combination probe and a cloud and aerosol spectrometer. In the current study, an adiabatic parcel model was used to perform cloud droplet number closure studies for several flights in differently polluted air masses
- …