102 research outputs found
Transverse NMR relaxation as a probe of mesoscopic structure
Transverse NMR relaxation in a macroscopic sample is shown to be extremely
sensitive to the structure of mesoscopic magnetic susceptibility variations.
Such a sensitivity is proposed as a novel kind of contrast in the NMR
measurements. For suspensions of arbitrary shaped paramagnetic objects, the
transverse relaxation is found in the case of a small dephasing effect of an
individual object. Strong relaxation rate dependence on the objects' shape
agrees with experiments on whole blood. Demonstrated structure sensitivity is a
generic effect that arises in NMR relaxation in porous media, biological
systems, as well as in kinetics of diffusion limited reactions.Comment: 4 pages, 3 figure
FUNCTIONAL MR OF BRAIN ACTIVITY AND PERFUSION IN PATIENTS WITH CHRONIC CORTICAL STROKE
PURPOSE: (1) To determine whether functional MR can reliably map functional deficits in patients with stroke in the primary visual cortex; (2) to determine whether functional MR can reliably map perfusion deficits; and (3) to determine whether functional MR can give any additional diagnostic information beyond conventional MR. METHODS: Seven patients who had had a stroke in their primary visual system were examined using two functional MR techniques: (1) dynamic susceptibility contrast imaging, and (2) cortical activation mapping during full-field visual stimulation. Maps of relative cerebral blood volume and activation were created and compared with visual field examinations and conventional T2-weighted images on a quadrant-by-quadrant basis in five of these patients. RESULTS: Visual field mapping matched with both T2-weighted conventional images and activation mapping of 16 of 18 quadrants. In two quadrants, the activation maps detected abnormalities that were present on the visual field examination but not present on the T2-weighted images nor on the relative cerebral blood volume maps, which may indicate abnormal function without frank infarction. In addition, the activation maps demonstrated decreased activation in extrastriate cortex and had normal T2 signal and relative cerebral blood volume but was adjacent to infarcted primary cortex, mapping in vivo how stroke in one location can affect the function of distant tissue. CONCLUSION: Functional MR techniques can accurately map functional and perfusion deficits and thereby provide additional clinically useful information. Additional studies will be needed to determine the prognostic utility of functional MR in stroke patients
Atomic Resonance and Scattering
Contains reports on eight research projects.National Science Foundation (Grant PHY83-06273)National Bureau of Standards (Grant NB83-NAHA-4058)National Science Foundation (Grant PHY84-11483)Joint Services Electronics Program (Contract DAAG29-83-K-0003)U.S. Navy - Office of Naval Research (Contract NO0014-79-C-0183)U.S. Navy - Office of Naval Research (Contract N00014-83-K-0695)National Science Foundation (Grant PHY83-07172-A01
Atomic Resonance and Scattering
Contains reports on nine research projects.National Science Foundation (Grant PHY79-09743)National Science Foundation (Grant PHY82-10486)Joint Services Electronics Program (Contract DAAG29-83-K-0003)U.S. Navy - Office of Naval Research (Contract N00014-79-C-0183)National Bureau of Standards (Grant NB83-NAHA-4058)National Science Foundation (Grant CHE79-02967-A04)National Science Foundation (Grant PHY83-07172)Joint Services Electronics Program (Grant DAAG29-83-K-0003
Basic Atomic Physics
Contains reports on seven research projects.National Science Foundation (Grant PHY 87-06560)Joint Services Electronics Program (Contract DAAL03-86-K-0001)Joint Services Electronics Program (Contract DAAL03-89-C-0002)National Science Foundation (Grant PHY 86-05893)U.S. Navy - Office of Naval Research (Contract N00014-83-K-0695)U.S. Navy - Office of Naval Research (Contract N00014-89-J-1207
Atomic Resonance and Scattering
Contains reports on six research projects.National Science Foundation (Grant PHY 83-06273)U.S. Navy - Office of Naval Research (Contract N00014-79-C-0183)Joint Services Electronics Program (Contract DAALO03-86-K-0002)National Science Foundation (Grant PHY 84-11483)National Science Foundation (Grant PHY 86-05893)National Science Foundation (Grant ECS 84-21392)U.S. Navy - Office of Naval Research (Contract N00014-83-K-0695)National Science Foundation (Grant CHE 84-21392
Atomic Resonance and Scattering
Contains reports on six research projects.National Science Foundation (PHY83-06273)Joint Services Electronics Program (DAAL03-86-K-0002)National Science Foundation (PHY84-11483)U.S. Navy-Office of Naval Research (Grant N00014-79-C-0183)Joint Services Electronics Program (Contract DAAG29-83-K-0003)National Science Foundation (Grant PHY83-07172-A01)U.S. Navy - Office of Naval Research (Grant N00014-83-K-0695)National Science Foundation (Grant CHE84-21392
Atomic Resonance and Scattering
Contains reports on two research projects.National Science Foundation (Grant PHY 87-06560)Joint Services Electronics Program (Contract DAAL03-86-K-O002)U.S. Navy - Office of Naval Research (Contract N00014-83-K-0695)National Science Foundation (Grant PHY 86-05893
Sensitivity of MRI Tumor Biomarkers to VEGFR Inhibitor Therapy in an Orthotopic Mouse Glioma Model
MRI biomarkers of tumor edema, vascular permeability, blood volume, and average vessel caliber are increasingly being employed to assess the efficacy of tumor therapies. However, the dependence of these biomarkers on a number of physiological factors can compromise their sensitivity and complicate the assessment of therapeutic efficacy. Here we examine the response of these MRI tumor biomarkers to cediranib, a potent vascular endothelial growth factor receptor (VEGFR) inhibitor, in an orthotopic mouse glioma model. A significant increase in the tumor volume and relative vessel caliber index (rVCI) and a slight decrease in the water apparent diffusion coefficient (ADC) were observed for both control and cediranib treated animals. This contrasts with a clinical study that observed a significant decrease in tumor rVCI, ADC and volume with cediranib therapy. While the lack of a difference between control and cediranib treated animals in these biomarker responses might suggest that cediranib has no therapeutic benefit, cediranib treated mice had a significantly increased survival. The increased survival benefit of cediranib treated animals is consistent with the significant decrease observed for cediranib treated animals in the relative cerebral blood volume (rCBV), relative microvascular blood volume (rMBV), transverse relaxation time (T2), blood vessel permeability (Ktrans), and extravascular-extracellular space (νe). The differential response of pre-clinical and clinical tumors to cediranib therapy, along with the lack of a positive response for some biomarkers, indicates the importance of evaluating the whole spectrum of different tumor biomarkers to properly assess the therapeutic response and identify and interpret the therapy-induced changes in the tumor physiology
- …