22 research outputs found
The Effects of Videotape Relaxation Training and EMG Feedback on Frontalis Muscle Activity
Two studies were undertaken to assess the relative effects of videotape progressive relaxation and EMG feedback. During both studies EMG levels of the frontalis muscles were recorded. Ten subjects referred by the University Counseling Center, as high anxiety individuals, were exposed to one of the above two methods. A single subject multiple baseline design, including reversals, was used. Each subject was given four or six baseline sessions, one, four or seven exposures to the videotape and three return to baseline sessions. In the second study, using the same design, each subject was given four or six baseline sessions, four or seven EMG feedback sessions and four return to baseline sessions. No relaxation in frontalis EMG occurred during the initial baseline condition for any of the subjects in either study. Only those subjects given seven exposures to either relaxation training method produced significant decreases in frontalis EMG. The videotape subjects showed decreases during both the modeling and return to baseline conditions. The EMG feedback subjects produced systematic decreases in frontalis EMG during the feedback condition but increases occurred during the return to baseline condition. The clinical utility of both relaxation procedures might be increased by: increasing the number of training sessions, programming for generalization to real life situations, and developing other versions of the videotape relaxation program. The suitability of frontalis EMG as an overall indicator of body relaxation is questionable
TRY plant trait database â enhanced coverage and open access
Plant traits - the morphological, anatomical, physiological, biochemical and phenological characteristics of plants - determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of traitâbased plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits - almost complete coverage for âplant growth formâ. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and traitâenvironmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
Loss of anti-mitotic effects of Bcl-2 with retention of anti-apoptotic activity during tumor progression in a mouse model
Bcl-2 is an anti-apoptotic and anti-proliferative protein over-expressed in several different human cancers including breast. Gain of Bcl-2 function in mammary epithelial cells was superimposed on the WAP-TAg transgenic mouse model of breast cancer progression to determine its effect on epithelial cell survival and proliferation at three key stages in oncogenesis: the initial proliferative process, hyperplasia, and cancer. During the initial proliferative process, Bcl-2 strongly inhibited both apoptosis and mitotic activity. However as tumorigenesis progressed to hyperplasia and adenocarcinoma, the inhibitory effects on mitotic activity were lost. In contrast, anti-apoptotic activity persisted in both hyperplasias and adenocarcinomas. These results demonstrate that the inhibitory effect of Bcl-2 on epithelial cell proliferation and apoptosis can separate during cancer progression. In this model, retention of anti-apoptotic activity with loss of anti-proliferative action resulted in earlier tumor presentation.
Â
Bcl-2 is an anti-apoptotic and anti-proliferative protein over-expressed in several different human cancers including breast. Gain of Bcl-2 function in mammary epithelial cells was superimposed on the WAP-TAg transgenic mouse model of breast cancer progression to determine its effect on epithelial cell survival and proliferation at three key stages in oncogenesis: the initial proliferative process, hyperplasia, and cancer. During the initial proliferative process, Bcl-2 strongly inhibited both apoptosis and mitotic activity. However as tumorigenesis progressed to hyperplasia and adenocarcinoma, the inhibitory effects on mitotic activity were lost. In contrast, anti-apoptotic activity persisted in both hyperplasias and adenocarcinomas. These results demonstrate that the inhibitory effect of Bcl-2 on epithelial cell proliferation and apoptosis can separate during cancer progression. In this model, retention of anti-apoptotic activity with loss of anti-proliferative action resulted in earlier tumor presentation.
//
Bcl-2 is an anti-apoptotic and anti-proliferative protein over-expressed in several different human cancers including breast. Gain of Bcl-2 function in mammary epithelial cells was superimposed on the WAP-TAg transgenic mouse model of breast cancer progression to determine its effect on epithelial cell survival and proliferation at three key stages in oncogenesis: the initial proliferative process, hyperplasia, and cancer. During the initial proliferative process, Bcl-2 strongly inhibited both apoptosis and mitotic activity. However as tumorigenesis progressed to hyperplasia and adenocarcinoma, the inhibitory effects on mitotic activity were lost. In contrast, anti-apoptotic activity persisted in both hyperplasias and adenocarcinomas. These results demonstrate that the inhibitory effect of Bcl-2 on epithelial cell proliferation and apoptosis can separate during cancer progression. In this model, retention of anti-apoptotic activity with loss of anti-proliferative action resulted in earlier tumor presentation
Recommended from our members
Host Niches and Defensive Extended Phenotypes Structure Parasitoid Wasp Communities
Oak galls are spectacular extended phenotypes of gallwasp genes in host oak tissues and have evolved complex
morphologies that serve, in part, to exclude parasitoid natural enemies. Parasitoids and their insect herbivore hosts have coevolved to produce diverse communities comprising about a third of all animal species. The factors structuring these communities, however, remain poorly understood. An emerging theme in community ecology is the need to consider the effects of host traits, shaped by both natural selection and phylogenetic history, on associated communities of natural enemies. Here we examine the impact of host traits and phylogenetic relatedness on 48 ecologically closed and species-rich communities of parasitoids attacking gall-inducing wasps on oaks. Gallwasps induce the development of spectacular and
structurally complex galls whose species- and generation-specific morphologies are the extended phenotypes of gallwasp genes. All the associated natural enemies attack their concealed hosts through gall tissues, and several structural gall traits have been shown to enhance defence against parasitoid attack. Here we explore the significance of these and other host traits in predicting variation in parasitoid community structure across gallwasp species. In particular, we test the ââEnemy Hypothesis,ââ which predicts that galls with similar morphology will exclude similar sets of parasitoids and therefore have similar parasitoid communities. Having controlled for phylogenetic patterning in host traits and communities, we found
significant correlations between parasitoid community structure and several gall structural traits (toughness, hairiness, stickiness), supporting the Enemy Hypothesis. Parasitoid community structure was also consistently predicted by components of the hostsâ spatiotemporal niche, particularly host oak taxonomy and gall location (e.g., leaf versus bud versus seed). The combined explanatory power of structural and spatiotemporal traits on community structure can be high, reaching 62% in one analysis. The observed patterns derive mainly from partial niche specialisation of highly generalist parasitoids with broad host ranges (.20 hosts), rather than strict separation of enemies with narrower host ranges, and so may contribute to maintenance of the richness of generalist parasitoids in gallwasp communities. Though evolutionary escape from parasitoids might most effectively be achieved via changes in host oak taxon, extreme conservatism in this trait
for gallwasps suggests that selection is more likely to have acted on gall morphology and location. Any escape from
parasitoids associated with evolutionary shifts in these traits has probably only been transient, however, due to subsequent recruitment of parasitoid species already attacking other host galls with similar trait combinations