20,653 research outputs found

    Diverse Temporal Properties of GRB Afterglow

    Full text link
    The detection of delayed X-ray, optical and radio emission, "afterglow", associated with γ\gamma-ray bursts (GRBs) is consistent with fireball models, where the emission are produced by relativistic expanding blast wave, driven by expanding fireball at cosmogical distances. The emission mechanisms of GRB afterglow have been discussed by many authors and synchrotron radiation is believed to be the main mechanism. The observations show that the optical light curves of two observed gamma-ray bursts, GRB970228 and GRB GRB970508, can be described by a simple power law, which seems to support the synchrotron radiation explanation. However, here we shall show that under some circumstances, the inverse Compton scattering (ICS) may play an important role in emission spectrum and this may influence the temporal properties of GRB afterglow. We expect that the light curves of GRB afterglow may consist of multi-components, which depends on the fireball parameters.Comment: Latex, no figures, minor correctio

    Electronic Interface Reconstruction at Polar-Nonpolar Mott Insulator Heterojunctions

    Full text link
    We report on a theoretical study of the electronic interface reconstruction (EIR) induced by polarity discontinuity at a heterojunction between a polar and a nonpolar Mott insulators, and of the two-dimensional strongly-correlated electron systems (2DSCESs) which accompany the reconstruction. We derive an expression for the minimum number of polar layers required to drive the EIR, and discuss key parameters of the heterojunction system which control 2DSCES properties. The role of strong correlations in enhancing confinement at the interface is emphasized.Comment: 7 pages, 6 figures, some typos correcte

    Is GRO J1744-28 a Strange Star?

    Get PDF
    The unusal hard x-ray burster GRO J1744-28 recently discovered by the Compton Gamma-ray Observatory (GRO) can be modeled as a strange star with a dipolar magnetic field ≤1011\le 10^{11} Gauss. When the accreted mass of the star exceeds some critical mass, its crust may break, resulting in conversion of the accreted matter into strange matter and release of energy. Subsequently, a fireball may form and expand relativistically outward. The expanding fireball may interact with the surrounding interstellar medium, causing its kinetic energy to be radiated in shock waves, producing a burst of x-ray radiation. The burst energy, duration, interval and spectrum derived from such a model are consistent with the observations of GRO J1744-28.Comment: Latex, has been published in SCIENCE, Vol. 280, 40

    Long-Distance Contributions to D^0-D^0bar Mixing Parameters

    Full text link
    Long-distance contributions to the D0D^0-Dˉ0\bar D^0 mixing parameters xx and yy are evaluated using latest data on hadronic D0D^0 decays. In particular, we take on two-body D→PPD \to PP and VPVP decays to evaluate the contributions of two-body intermediate states because they account for ∼50\sim 50% of hadronic D0D^0 decays. Use of the diagrammatic approach has been made to estimate yet-observed decay modes. We find that yy is of order a few ×10−3\times 10^{-3} and xx of order 10−310^{-3} from hadronic PPPP and VPVP modes. These are in good agreement with the latest direct measurement of D0D^0-Dˉ0\bar D^0 mixing parameters using the D0→KSπ+π−D^0 \to K_S \pi^+\pi^- and KSK+K−K_S K^+ K^- decays by BaBar. We estimate the contribution to yy from the VVVV modes using the factorization model and comment on the single-particle resonance effects and contributions from other two-body modes involving even-parity states.Comment: 18 pages and 1 figure; footnotes and references added; to appear in Phys. Rev.

    Simple protocol for secure decoy-state quantum key distribution with a loosely controlled source

    Full text link
    The method of decoy-state quantum key distribution (QKD) requests different intensities of light pulses. Existing theory has assumed exact control of intensities. Here we propose a simple protocol which is secure and efficient even there are errors in intensity control. In our protocol, decoy pulses and signal pulses are generated from the same father pulses with a two-value attenuation. Given the upper bound of fluctuation of the father pulses, our protocol is secure provided that the two-value attenuation is done exactly. We propose to use unbalanced beam-splitters for a stable attenuation. Given that the intensity error is bounded by ±5\pm5%, with the same key rate, our method can achieve a secure distance only 1 km shorter than that of an ideal protocol with exactly controlled source

    Phase soliton and pairing symmetry of a two-band superconductor: Role of the proximity effect

    Full text link
    We suggest a mechanism which promotes the existence of a phase soliton -- topological defect formed in the relative phase of superconducting gaps of a two-band superconductor with s+- type of pairing. This mechanism exploits the proximity effect with a conventional s-wave superconductor which favors the alignment of the phases of the two-band superconductor which, in the case of s+- pairing, are pi-shifted in the absence of proximity. In the case of a strong proximity such effect can be used to reduce soliton's energy below the energy of a soliton-free state thus making the soliton thermodynamically stable. Based on this observation we consider an experimental setup, applicable both for stable and metastable solitons, which can be used to distinguish between s+- and s++ types of pairing in the iron-based multiband superconductors.Comment: New references, added discussion about self-consistency of the GL description of a phase soliton in the presence of a proximity patc

    Edge Magnetoplasmons in Quantum Hall Line Junction Systems

    Full text link
    A quantum Hall line junction system consists of a one-dimensional Luttinger liquid (LL) and two chiral channels that allow density waves incident upon and reflected by the LL to be measured separately. We demonstrate that interactions in a quantum Hall line junction system can be probed by studying edge magnetoplasmon absorption spectra and their polarization dependences. Strong interactions in the junction lead to collective modes that are isolated in either Luttinger liquid or contact subsystems.Comment: 4 pages, 3 figures, submitted to Phys. Rev. B Rapid Communicatio

    Mobility enhancement and highly efficient gating of monolayer MoS2 transistors with Polymer Electrolyte

    Full text link
    We report electrical characterization of monolayer molybdenum disulfide (MoS2) devices using a thin layer of polymer electrolyte consisting of poly(ethylene oxide) (PEO) and lithium perchlorate (LiClO4) as both a contact-barrier reducer and channel mobility booster. We find that bare MoS2 devices (without polymer electrolyte) fabricated on Si/SiO2 have low channel mobility and large contact resistance, both of which severely limit the field-effect mobility of the devices. A thin layer of PEO/ LiClO4 deposited on top of the devices not only substantially reduces the contact resistance but also boost the channel mobility, leading up to three-orders-of-magnitude enhancement of the field-effect mobility of the device. When the polymer electrolyte is used as a gate medium, the MoS2 field-effect transistors exhibit excellent device characteristics such as a near ideal subthreshold swing and an on/off ratio of 106 as a result of the strong gate-channel coupling.Comment: 17 pages, 4 figures, accepted by J. Phys.
    • …
    corecore