20,653 research outputs found
Diverse Temporal Properties of GRB Afterglow
The detection of delayed X-ray, optical and radio emission, "afterglow",
associated with -ray bursts (GRBs) is consistent with fireball models,
where the emission are produced by relativistic expanding blast wave, driven by
expanding fireball at cosmogical distances. The emission mechanisms of GRB
afterglow have been discussed by many authors and synchrotron radiation is
believed to be the main mechanism. The observations show that the optical light
curves of two observed gamma-ray bursts, GRB970228 and GRB GRB970508, can be
described by a simple power law, which seems to support the synchrotron
radiation explanation. However, here we shall show that under some
circumstances, the inverse Compton scattering (ICS) may play an important role
in emission spectrum and this may influence the temporal properties of GRB
afterglow. We expect that the light curves of GRB afterglow may consist of
multi-components, which depends on the fireball parameters.Comment: Latex, no figures, minor correctio
Electronic Interface Reconstruction at Polar-Nonpolar Mott Insulator Heterojunctions
We report on a theoretical study of the electronic interface reconstruction
(EIR) induced by polarity discontinuity at a heterojunction between a polar and
a nonpolar Mott insulators, and of the two-dimensional strongly-correlated
electron systems (2DSCESs) which accompany the reconstruction. We derive an
expression for the minimum number of polar layers required to drive the EIR,
and discuss key parameters of the heterojunction system which control 2DSCES
properties. The role of strong correlations in enhancing confinement at the
interface is emphasized.Comment: 7 pages, 6 figures, some typos correcte
Is GRO J1744-28 a Strange Star?
The unusal hard x-ray burster GRO J1744-28 recently discovered by the Compton
Gamma-ray Observatory (GRO) can be modeled as a strange star with a dipolar
magnetic field Gauss. When the accreted mass of the star exceeds
some critical mass, its crust may break, resulting in conversion of the
accreted matter into strange matter and release of energy. Subsequently, a
fireball may form and expand relativistically outward. The expanding fireball
may interact with the surrounding interstellar medium, causing its kinetic
energy to be radiated in shock waves, producing a burst of x-ray radiation. The
burst energy, duration, interval and spectrum derived from such a model are
consistent with the observations of GRO J1744-28.Comment: Latex, has been published in SCIENCE, Vol. 280, 40
Long-Distance Contributions to D^0-D^0bar Mixing Parameters
Long-distance contributions to the - mixing parameters and
are evaluated using latest data on hadronic decays. In particular, we
take on two-body and decays to evaluate the contributions of
two-body intermediate states because they account for of hadronic
decays. Use of the diagrammatic approach has been made to estimate
yet-observed decay modes. We find that is of order a few
and of order from hadronic and modes. These are in good
agreement with the latest direct measurement of - mixing
parameters using the and decays by
BaBar. We estimate the contribution to from the modes using the
factorization model and comment on the single-particle resonance effects and
contributions from other two-body modes involving even-parity states.Comment: 18 pages and 1 figure; footnotes and references added; to appear in
Phys. Rev.
Simple protocol for secure decoy-state quantum key distribution with a loosely controlled source
The method of decoy-state quantum key distribution (QKD) requests different
intensities of light pulses. Existing theory has assumed exact control of
intensities. Here we propose a simple protocol which is secure and efficient
even there are errors in intensity control. In our protocol, decoy pulses and
signal pulses are generated from the same father pulses with a two-value
attenuation. Given the upper bound of fluctuation of the father pulses, our
protocol is secure provided that the two-value attenuation is done exactly. We
propose to use unbalanced beam-splitters for a stable attenuation. Given that
the intensity error is bounded by , with the same key rate, our method
can achieve a secure distance only 1 km shorter than that of an ideal protocol
with exactly controlled source
Phase soliton and pairing symmetry of a two-band superconductor: Role of the proximity effect
We suggest a mechanism which promotes the existence of a phase soliton --
topological defect formed in the relative phase of superconducting gaps of a
two-band superconductor with s+- type of pairing. This mechanism exploits the
proximity effect with a conventional s-wave superconductor which favors the
alignment of the phases of the two-band superconductor which, in the case of
s+- pairing, are pi-shifted in the absence of proximity. In the case of a
strong proximity such effect can be used to reduce soliton's energy below the
energy of a soliton-free state thus making the soliton thermodynamically
stable. Based on this observation we consider an experimental setup, applicable
both for stable and metastable solitons, which can be used to distinguish
between s+- and s++ types of pairing in the iron-based multiband
superconductors.Comment: New references, added discussion about self-consistency of the GL
description of a phase soliton in the presence of a proximity patc
Edge Magnetoplasmons in Quantum Hall Line Junction Systems
A quantum Hall line junction system consists of a one-dimensional Luttinger
liquid (LL) and two chiral channels that allow density waves incident upon and
reflected by the LL to be measured separately. We demonstrate that interactions
in a quantum Hall line junction system can be probed by studying edge
magnetoplasmon absorption spectra and their polarization dependences. Strong
interactions in the junction lead to collective modes that are isolated in
either Luttinger liquid or contact subsystems.Comment: 4 pages, 3 figures, submitted to Phys. Rev. B Rapid Communicatio
Mobility enhancement and highly efficient gating of monolayer MoS2 transistors with Polymer Electrolyte
We report electrical characterization of monolayer molybdenum disulfide
(MoS2) devices using a thin layer of polymer electrolyte consisting of
poly(ethylene oxide) (PEO) and lithium perchlorate (LiClO4) as both a
contact-barrier reducer and channel mobility booster. We find that bare MoS2
devices (without polymer electrolyte) fabricated on Si/SiO2 have low channel
mobility and large contact resistance, both of which severely limit the
field-effect mobility of the devices. A thin layer of PEO/ LiClO4 deposited on
top of the devices not only substantially reduces the contact resistance but
also boost the channel mobility, leading up to three-orders-of-magnitude
enhancement of the field-effect mobility of the device. When the polymer
electrolyte is used as a gate medium, the MoS2 field-effect transistors exhibit
excellent device characteristics such as a near ideal subthreshold swing and an
on/off ratio of 106 as a result of the strong gate-channel coupling.Comment: 17 pages, 4 figures, accepted by J. Phys.
- …