9,810 research outputs found
Ab-initio determined electronic and magnetic properties of half-metallic NiCrSi and NiMnSi Heusler alloys; the role of interfaces and defects
Using state-of-the-art first-principles calculations we study the properties
of the ferromagnetic Heusler compounds NiYSi where Y stands for V, Cr or Mn.
NiCrSi and NiMnSi contrary to NiVSi are half-metallic at their equilibrium
lattice constant exhibiting integer values of the total spin magnetic moment
and thus we concentrate on these two alloys. The minority-spin gap has the same
characteristics as for the well-known NiMnSb alloy being around 1 eV.
Upon tetragonalization the gap is present in the density of states even for
expansion or contraction of the out-of-plane lattice parameter by 5%. The Cr-Cr
and Mn-Mn interactions make ferromagnetism extremely stable and the Curie
temperature exceeds 1000 K for NiMnSi. Surface and interfaces with GaP, ZnS and
Si semiconductors are not half-metallic but in the case of NiCrSi the Ni-based
contacts present spin-polarization at the Fermi level over 90%. Finally, we
show that there are two cases of defects and atomic-swaps. The first-ones which
involve the Cr(Mn) and Si atoms induce states at the edges of the gap which
persists for a moderate-concentration of defects. Defects involving Ni atoms
induce states localized within the gap completely destroying the
half-metallicity. Based on single-impurity calculations we associate these
states to the symmetry of the crystal
3d-electron induced magnetic phase transition in half-metallic semi-Heusler alloys
We study the effect of the non-magnetic 3\textit{d} atoms on the magnetic
properties of the half-metallic (HM) semi-Heusler alloys CoCuMnSb
and NiCuMnSb () using first-principles
calculations. We determine the magnetic phase diagram of both systems at zero
temperature and obtain a phase transition from a ferromagnetic to an
antiferromagnetic state. For low Cu concentrations the ferromagnetic RKKY-like
exchange mechanism is dominating, while the antiferromagnetic superexchange
coupling becomes important for larger Cu content leading to the observed
magnetic phase transition. A strong dependence of the magnetism in both systems
on the position of the Fermi level within the HM gap is obtained. Obtained
results are in good agreement with the available experimental data
Establishing the potential for using routine data on Incapacity Benefit to assess the local impact of policy initiatives
<i>Background</i>: Incapacity Benefit (IB) is the key contributory benefit for people who are incapable of work because of illness or disability.
<i>Methods</i>: The aims were to establish the utility of routinely collected data for local evaluation and to provide a descriptive epidemiology of the IB population in Glasgow and Scotland for the period 2000–05 using data supplied by the Department for Work and Pensions.
<i>Results</i>: Glasgow's IB population is large in absolute and relative terms but is now falling, mainly due to a decrease in on flow. Claimants, tend to be older, have a poor work history and suffer from mental health problems. The rate of decline has been greater in Glasgow than Scotland, although the rate of on flow is still higher.
<i>Conclusions</i>: Department for Work and Pensions (DWP) data can be used locally to provide important insights into the dynamics of the IB population. However, to be truly useful, more work needs to be undertaken to combine the DWP data with other information
Magnetism of mixed quaternary Heusler alloys: (Ni,T)MnSn (T=Cu,Pd) as a case study
The electronic properties, exchange interactions, finite-temperature
magnetism, and transport properties of random quaternary Heusler NiMnSn
alloys doped with Cu- and Pd-atoms are studied theoretically by means of {\it
ab initio} calculations over the entire range of dopant concentrations. While
the magnetic moments are only weakly dependent on the alloy composition, the
Curie temperatures exhibit strongly non-linear behavior with respect to
Cu-doping in contrast with an almost linear concentration dependence in the
case of Pd-doping. The present parameter-free theory agrees qualitatively and
also reasonably well quantitatively with the available experimental results. An
analysis of exchange interactions is provided for a deeper understanding of the
problem. The dopant atoms perturb electronic structure close to the Fermi
energy only weakly and the residual resistivity thus obeys a simple Nordheim
rule. The dominating contribution to the temperature-dependent resistivity is
due to thermodynamical fluctuations originating from the spin-disorder, which,
according to our calculations, can be described successfully via the disordered
local moments model. Results based on this model agree fairly well with the
measured values of spin-disorder induced resistivity.Comment: 13 pages, 13 figure
Processing and Deploying the McDonnell Douglas Payload Assist Module (PAM)
This pap*r presents the flow of the operational PAM system from the time processing is started at the launch site through deployment from the Orbiters. It addresses the ground checkout activities, in-orbit operations including crew and ground personnel system evaluation and command activities, and PAM deployment from the Orbiter. Additionally, transfer orbit errors for two PAMs used on STS-5 are presented.
The PAM ground processing approach affords maximum assurance of a flight-ready PAM prior to mating the spacecraft and provides a cargo element that is fully verified as flightready before integration with the cargo integration test equipment (CITE) and the Orbiter. The PAM system design and on-board data displays give the astronauts the capability to evaluate the status of the PAM\u27s health and deploy the PAM/spacecraft without air-to-ground data or communications
The kinetics of surfactant desorption at the air–solution interface
The kinetics of desorption of the anionic surfactant sodium dodecylbenzene sulfonate at the air–solution interface have been studied using neutron reflectivity (NR). The experimental arrangement incorporates a novel flow cell in which the subphase can be exchanged (diluted) using a laminar flow whilst the surface region remains unaltered. The kinetics of the desorption is relatively slow and occurs over many tens of minutes compared with the dilution timescale of approximately 10–30 minutes. A detailed mathematical model, in which the rate of the desorption is determined by transport through a near-surface diffusion layer into a diluted bulk solution below, is developed and provides a good description of the timedependent adsorption data.\ud
\ud
A key parameter of the model is the ratio of the depth of the diffusion layer, Hc , to the depth of the fluid, Hf, and we find that this is related to the reduced Péclet number, Pe*, for the system, via Hc/Hf, = C/Pe* 1/ 2 . Although from a highly idealised experimental arrangement, the results provide an important insight into the ‘rinse mechanism’, which is applicable to a wide variety of domestic and industrial circumstances
Isolation and characterisation of 17 microsatellite loci for the red-billed chough (Pyrrhocorax pyrrhocorax)
Peer reviewedPostprin
Surface Properties of the Half- and Full-Heusler Alloys
Using a full-potential \textit{ab-initio} technique I study the electronic
and magnetic properties of the (001) surfaces of the half-Heusler alloys,
NiMnSb, CoMnSb and PtMnSb and of the full-Heusler alloys CoMnGe, CoMnSi
and CoCrAl. The MnSb terminated surfaces of the half-Heusler compounds
present properties similar to the bulk compounds and, although the
half-metallicity is lost, an important spin-polarisation at the Fermi level. In
contrast to this the Ni terminated surface shows an almost zero net
spin-polarisation. While the bulk CoMnGe and CoMnSi are almost
half-ferromagnetic, their surfaces lose the half-metallic character and the net
spin-polarisation at the Fermi level is close to zero. Contrary to these
compounds the CrAl terminated (001) surface of CoCrAl shows a spin
polarisation of about 84%.Comment: 14 pages, 6 figure
Polyaryl ethers and related polysiloxane copolymer molecular coatings preparation and radiation degrdation
Poly(arylene ether sulfones) comprise a class of materials known as engineering thermoplastics which have a variety of important applications. These polymers are tough, rigid materials with good mechanical properties over a wide temperature range, and they are processed by conventional methods into products typically having excellent hydrolytic, thermal, oxidative and dimensional stability. Wholly aromatic random copolymers of hydroquinone and biphenol with 4.4 prime dichlorodiphenyl sulfone were synthesized via mechanical nucleophilic displacement. Their structures were characterized and mechanical behavior studied. These tough, ductile copolymers show excellent radiation resistance to electron beam treatment and retain much of the mechanical properties up to at least 700 Mrads under argon
- …