49 research outputs found
Spatiotemporal evolution, mineralogical composition, and transport mechanisms of long-runout landslides in Valles Marineris, Mars
Long-runout landslides with transport distances of >50 km are ubiquitous in Valles Marineris (VM), yet the transport mechanisms remain poorly understood. Four decades of studies reveal significant variation in landslide morphology and emplacement age, but how these variations are related to landslide transport mechanisms is not clear. In this study, we address this question by conducting systematic geological mapping and compositional analysis of VM long-runout landslides using high-resolution Mars Reconnaissance Orbiter imagery and spectral data. Our work shows that: (1) a two-zone morphological division (i.e., an inner zone characterized by rotated blocks and an outer zone expressed by a thin sheet with a nearly flat surface) characterizes all major VM landslides; (2) landslide mobility is broadly dependent on landslide mass; and (3) the maximum width of the outer zone and its transport distance are inversely related to the basal friction that was estimated from the surface slope angle of the outer zone. Our comprehensive Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) compositional analysis indicates that hydrated silicates are common in landslide outer zones and nearby trough-floor deposits. Furthermore, outer zones containing hydrated minerals are sometimes associated with longer runout and increased lateral spreading compared to those without detectable hydrated minerals. Finally, with one exception we find that hydrated minerals are absent in the inner zones of the investigated VM landslides. These results as whole suggest that hydrated minerals may have contributed to the magnitude of lateral spreading and long-distance forward transport of major VM landslides
Spatiotemporal evolution, mineralogical composition, and transport mechanisms of long-runout landslides in Valles Marineris, Mars
Long-runout landslides with transport distances of >50 km are ubiquitous in Valles Marineris (VM), yet the transport mechanisms remain poorly understood. Four decades of studies reveal significant variation in landslide morphology and emplacement age, but how these variations are related to landslide transport mechanisms is not clear. In this study, we address this question by conducting systematic geological mapping and compositional analysis of VM long-runout landslides using high-resolution Mars Reconnaissance Orbiter imagery and spectral data. Our work shows that: (1) a two-zone morphological division (i.e., an inner zone characterized by rotated blocks and an outer zone expressed by a thin sheet with a nearly flat surface) characterizes all major VM landslides; (2) landslide mobility is broadly dependent on landslide mass; and (3) the maximum width of the outer zone and its transport distance are inversely related to the basal friction that was estimated from the surface slope angle of the outer zone. Our comprehensive Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) compositional analysis indicates that hydrated silicates are common in landslide outer zones and nearby trough-floor deposits. Furthermore, outer zones containing hydrated minerals are sometimes associated with longer runout and increased lateral spreading compared to those without detectable hydrated minerals. Finally, with one exception we find that hydrated minerals are absent in the inner zones of the investigated VM landslides. These results as whole suggest that hydrated minerals may have contributed to the magnitude of lateral spreading and long-distance forward transport of major VM landslides
A charge dependent long-ranged force drives tailored assembly of matter in solution
The interaction between charged objects in solution is generally expected to
recapitulate two central principles of electromagnetics: (i) like-charged
objects repel, and (ii) they do so regardless of the sign of their electrical
charge. Here we demonstrate experimentally that the solvent plays a hitherto
unforeseen but crucial role in interparticle interactions, and importantly,
that interactions in the fluid phase can break charge-reversal symmetry. We
show that in aqueous solution, negatively charged particles can attract at long
range while positively charged particles repel. In solvents that exhibit an
inversion of the net molecular dipole at an interface, such as alcohols, we
find that the converse can be true: positively charged particles may attract
whereas negatives repel. The observations hold across a wide variety of surface
chemistries: from inorganic silica and polymeric particles to polyelectrolyte-
and polypeptide-coated surfaces in aqueous solution. A theory of interparticle
interactions that invokes solvation at an interface explains the observations.
Our study establishes a specific and unanticipated mechanism by which the
molecular solvent may give rise to a strong and long-ranged force in solution,
with immediate ramifications for a variety of particulate and molecular
processes including tailored self-assembly, gelation and crystallization, as
well as biomolecular condensation, coacervation and phase segregation. These
findings also shed light on the solvent-induced interfacial electrical
potential - an elusive quantity in electrochemistry and interface science
implicated in many natural and technological processes, such as atmospheric
chemical reactions, electrochemical energy storage and conversion, and the
conduction of ions across cell membranes.Comment: 20 pages, 6 figure
Outside The Box: Building a Digital Asset Management Ecosystem for Preservation and Access
The University of Houston (UH) Libraries made an institutional commitment in late 2015 to migrate the data for its digitized cultural heritage collections to open source systems for preservation and access: Hydra-in-a-Box, Archivematica, and ArchivesSpace. This article describes the work that the UH Libraries implementation team has completed to date, including open source tools for streamlining digital curation workflows, minting and resolving identifiers, and managing SKOS vocabularies. These systems, workflows, and tools, collectively known as the Bayou City Digital Asset Management System (BCDAMS), represent a novel effort to solve common issues in the digital curation lifecycle and may serve as a model for other institutions seeking to implement flexible and comprehensive systems for digital preservation and access.Librarie
Interdisciplinary Graduate Experience: Lessons Learned
Engineers interact in the workplace with technical peers in other disciplines at all stages of design, development, and application. Awareness of the constraints and needs of the other disciplines can be key in many situations. Such interdisciplinary activity and the associated communication are facilitated if the all participants have a solid knowledge of discipline-specific terminology and an understanding of connecting concepts. Consequently, experience relating to interdisciplinary teamwork is a necessary component of engineering education. The Smart Engineering Group at the University of Missouri-Rolla was established to conduct interdisciplinary research and to create interdisciplinary educational resources. The topical interest area is smart structures which requires the integration of materials, structures, sensing, signal processing, manufacturing, etc. The interdisciplinary research and educational activities of the group, the assessment of those activities, and the experiences of several graduate students will be described. The effectiveness of collaborative student work was tied to the students- understanding of the needed synergy and their comfort with cross-disciplinary communication. Also, an interdisciplinary course, which grew out of the group-s experiences, provided systematic preparation for graduate research projects. The role of this course will be discussed as it relates to the quality of collaborative experiences from both student and faculty perspectives
Prevalence and Risk Factors for Early, Undesired Weaning Attributed to Lactation Dysfunction
Background: Breastfeeding durations in the United States fall short of public health objectives. We sought to quantify the prevalence and identify risk factors for early, undesired weaning that mothers attribute to physiologic difficulties with breastfeeding
Complement receptor 1 is expressed on brain cells and in the human brain
Genome wide association studies (GWAS) have highlighted the importance of the complement cascade in pathogenesis of Alzheimer's disease (AD). Complement receptor 1 (CR1; CD35) is among the top GWAS hits. The long variant of CR1 is associated with increased risk for AD; however, roles of CR1 in brain health and disease are poorly understood. A critical confounder is that brain expression of CR1 is controversial; failure to demonstrate brain expression has provoked the suggestion that peripherally expressed CR1 influences AD risk. We took a multi‐pronged approach to establish whether CR1 is expressed in brain. Expression of CR1 at the protein and mRNA level was assessed in human microglial lines, induced pluripotent stem cell (iPSC)‐derived microglia from two sources and brain tissue from AD and control donors. CR1 protein was detected in microglial lines and iPSC‐derived microglia expressing different CR1 variants when immunostained with a validated panel of CR1‐specific antibodies; cell extracts were positive for CR1 protein and mRNA. CR1 protein was detected in control and AD brains, co‐localizing with astrocytes and microglia, and expression was significantly increased in AD compared to controls. CR1 mRNA expression was detected in all AD and control brain samples tested; expression was significantly increased in AD. The data unequivocally demonstrate that the CR1 transcript and protein are expressed in human microglia ex vivo and on microglia and astrocytes in situ in the human brain; the findings support the hypothesis that CR1 variants affect AD risk by directly impacting glial functions
The Importance of Time and Place: Nutrient Composition and Utilization of Seasonal Pollens by European Honey Bees (Apis mellifera L.)
Honey bee colonies have a yearly cycle that is supported nutritionally by the seasonal progression of flowering plants. In the spring, colonies grow by rearing brood, but in the fall, brood rearing declines in preparation for overwintering. Depending on where colonies are located, the yearly cycle can differ especially in overwintering activities. In temperate climates of Europe and North America, colonies reduce or end brood rearing in the fall while in warmer climates bees can rear brood and forage throughout the year. To test the hypothesis that nutrients available in seasonal pollens and honey bee responses to them can differ we analyzed pollen in the spring and fall collected by colonies in environments where brood rearing either stops in the fall (Iowa) or continues through the winter (Arizona). We fed both types of pollen to worker offspring of queens that emerged and open mated in each type of environment. We measured physiological responses to test if they differed depending on the location and season when the pollen was collected and the queen line of the workers that consumed it. Specifically, we measured pollen and protein consumption, gene expression levels (hex 70, hex 110, and vg) and hypopharyngeal gland (HPG) development. We found differences in macronutrient content and amino and fatty acids between spring and fall pollens from the same location and differences in nutrient content between locations during the same season. We also detected queen type and seasonal effects in HPG size and differences in gene expression between bees consuming spring vs. fall pollen with larger HPG and higher gene expression levels in those consuming spring pollen. The effects might have emerged from the seasonal differences in nutritional content of the pollens and genetic factors associated with the queen lines we used
1-year outcomes of angina management guided by invasive coronary function testing (CorMicA)
Objectives:
The aim of this study was to test the hypothesis that invasive coronary function testing at time of angiography could help stratify management of angina patients without obstructive coronary artery disease.
Background:
Medical therapy for angina guided by invasive coronary vascular function testing holds promise, but the longer-term effects on quality of life and clinical events are unknown among patients without obstructive disease.
Methods:
A total of 151 patients with angina with symptoms and/or signs of ischemia and no obstructive coronary artery disease were randomized to stratified medical therapy guided by an interventional diagnostic procedure versus standard care (control group with blinded interventional diagnostic procedure results). The interventional diagnostic procedure–facilitated diagnosis (microvascular angina, vasospastic angina, both, or neither) was linked to guideline-based management. Pre-specified endpoints included 1-year patient-reported outcome measures (Seattle Angina Questionnaire, quality of life [EQ-5D]) and major adverse cardiac events (all-cause mortality, myocardial infarction, unstable angina hospitalization or revascularization, heart failure hospitalization, and cerebrovascular event) at subsequent follow-up.
Results:
Between November 2016 and December 2017, 151 patients with ischemia and no obstructive coronary artery disease were randomized (n = 75 to the intervention group, n = 76 to the control group). At 1 year, overall angina (Seattle Angina Questionnaire summary score) improved in the intervention group by 27% (difference 13.6 units; 95% confidence interval: 7.3 to 19.9; p < 0.001). Quality of life (EQ-5D index) improved in the intervention group relative to the control group (mean difference 0.11 units [18%]; 95% confidence interval: 0.03 to 0.19; p = 0.010). After a median follow-up duration of 19 months (interquartile range: 16 to 22 months), major adverse cardiac events were similar between the groups, occurring in 9 subjects (12%) in the intervention group and 8 (11%) in the control group (p = 0.803).
Conclusions:
Stratified medical therapy in patients with ischemia and no obstructive coronary artery disease leads to marked and sustained angina improvement and better quality of life at 1 year following invasive coronary angiography. (Coronary Microvascular Angina [CorMicA]; NCT03193294
Ischemia and no obstructive coronary artery disease: prevalence and correlates of coronary vasomotion disorders
Background:
Determine the prevalence and correlates of microvascular and vasospastic angina in patients with symptoms and signs of ischemia but no obstructive coronary artery disease (INOCA).
Methods:
Three hundred ninety-one patients with angina were enrolled at 2 regional centers over 12 months from November 2016 (NCT03193294). INOCA subjects (n=185; 47%) had more limiting dyspnea (New York Heart Association classification III/IV 54% versus 37%; odds ratio [OR], 2.0 [1.3–3.0]; P=0.001) and were more likely to be female (68% INOCA versus 38% in coronary artery disease; OR, 1.9 [1.5 to 2.5]; P<0.001) but with lower cardiovascular risk scores (ASSIGN score median 20% versus 24%; P=0.003). INOCA subjects had similar burden of angina (Seattle Angina Questionnaire) but reduced quality of life compared with coronary artery disease; subjects (EQ5D-5 L index 0.60 versus 0.65 units; P=0.041).
Results:
An interventional diagnostic procedure with reference invasive tests including coronary flow reserve, microvascular resistance, and vasomotor responses to intracoronary acetylcholine (vasospasm provocation) was performed in 151 INOCA subjects. Overall, 78 (52%) had isolated microvascular angina, 25 (17%) had isolated vasospastic angina, 31 (20%) had both, and 17 (11%) had noncardiac chest pain. Regression analysis showed inducible ischemia on treadmill testing (OR, 7.5 [95% CI, 1.7–33.0]; P=0.008) and typical angina (OR, 2.7 [1.1–6.6]; P=0.032) were independently associated with microvascular angina. Female sex tended to associate with a diagnosis of microvascular angina although this was not significant (OR, 2.7 [0.9–7.9]; P=0.063). Vasospastic angina was associated with smoking (OR, 9.5 [2.8–32.7]; P<0.001) and age (OR, 1.1 per year, [1.0–1.2]; P=0.032].
Conclusions:
Over three quarters of patients with INOCA have identifiable disorders of coronary vasomotion including microvascular and vasospastic angina. These patients have comparable angina burden but reduced quality of life compared to patients with obstructive coronary artery disease. Microvascular angina and vasospastic angina are distinct disorders that may coexist but differ in associated clinical characteristics, symptoms, and angina severity