40 research outputs found
Pressure distributions on three different cruciform aft-control surfaces of a wingless missile at Mach 1.60, 2.36, and 3.70. Volume 2: Clipped delta tail
Pressure coefficients were obtained in the Langley Unitary Plan wind tunnel for a wingless missile with a clipped delta tail. The angle of attack was varied from -4 deg to 20 deg, model roll angle was varied from 0 deg to 90 deg in 22.5 deg increments, and tail deflections were 0 deg to - 15 deg. The pressures were measured on two adjacent tail surfaces using 91 pressure orifices per tail surface. Results are presented in plotted and tabular form
Pressure distributions on three different cruciform aft-tail control surfaces of a wingless missile at Mach 1.60, 2.36, and 3.70. Volume 3: Cranked tail
The results of pressure distribution tests are presented without analysis. The test Reynolds number used was 6.6. x 10 to the 6th power per meter
Vapor-screen technique for flow visualization in the Langley Unitary Plan Wind Tunnel
The vapor-screen technique for flow visualization, as developed for the Langley Unitary Plan Wind Tunnel, is described with evaluations of light sources and photographic equipment. Test parameters including dew point, pressure, and temperature were varied to determine optimum conditions for obtaining high-quality vapor-screen photographs. The investigation was conducted in the supersonic speed range for Mach numbers from 1.47 to 4.63 at model angles of attack up to 35 deg. Vapor-screen photographs illustrating various flow patterns are presented for several missile and aircraft configurations. Examples of vapor-screen results that have contributed to the understanding of complex flow fields and provided a basis for the development of theoretical codes are presented with reference to other research
Pressure distributions on three different cruciform aft-tail control surfaces of a wingless missile at Mach 1.60, 2.36, and 3.70. Volume 1: Trapezoidal tail
The results of pressure distribution tests conducted in a wind tunnel are presented without analysis. The data were obtained for trapezoidal aft tail control surfaces on a wingless missile model at Mach numbers of 1.60, 2.36, and 3.70 for angles of attack from -4 to 20 deg model roll angles from 0 to 90 deg and tail deflections of 0 and -15 deg. The test Reynolds number used was 6.6 million per meter
Nanotools for Neuroscience and Brain Activity Mapping
Neuroscience is at a crossroads. Great effort is being invested into deciphering specific neural interactions and circuits. At the same time, there exist few general theories or principles that explain brain function. We attribute this disparity, in part, to limitations in current methodologies. Traditional neurophysiological approaches record the activities of one neuron or a few neurons at a time. Neurochemical approaches focus on single neurotransmitters. Yet, there is an increasing realization that neural circuits operate at emergent levels, where the interactions between hundreds or thousands of neurons, utilizing multiple chemical transmitters, generate functional states. Brains function at the nanoscale, so tools to study brains must ultimately operate at this scale, as well. Nanoscience and nanotechnology are poised to provide a rich toolkit of novel methods to explore brain function by enabling simultaneous measurement and manipulation of activity of thousands or even millions of neurons. We and others refer to this goal as the Brain Activity Mapping Project. In this Nano Focus, we discuss how recent developments in nanoscale analysis tools and in the design and synthesis of nanomaterials have generated optical, electrical, and chemical methods that can readily be adapted for use in neuroscience. These approaches represent exciting areas of technical development and research. Moreover, unique opportunities exist for nanoscientists, nanotechnologists, and other physical scientists and engineers to contribute to tackling the challenging problems involved in understanding the fundamentals of brain function
A dopaminergic switch for fear to safety transitions
Overcoming aversive emotional memories requires neural systems that detect when fear responses are no longer appropriate. The midbrain ventral tegmental area (VTA) dopamine system has been implicated in reward and more broadly in signalling when a better than expected outcome has occurred. This suggests that it may be important in guiding fear to safety transitions. We report that when an expected aversive outcome does not occur, activity in midbrain dopamine neurons is necessary to extinguish behavioral fear responses and engage molecular signalling events in extinction learning circuits. Furthermore, a specific dopamine projection to the nucleus accumbens medial shell is partially responsible for this effect. By contrast, a separate dopamine projection to the medial prefrontal cortex opposes extinction learning. This demonstrates a novel function for the canonical VTA-dopamine reward system and reveals opposing behavioural roles for different dopamine neuron projections in fear extinction learning