12 research outputs found

    Vessel diameter measurements in gadolinium contrast-enhanced three-dimensional MRA of peripheral arteries

    No full text
    In this study, the possibilities for quantification of vessel diameters of peripheral arteries in gadolinium contrast-enhanced magnetic resonance angiography (Gd CE MRA) were evaluated. Absolute vessel diameter measurements were assessed objectively and semi-automatically in maximum intensity projections (MIPs) of contrast-enhanced T1-weighted 3D spoiled gradient-echo datasets, studied with digital subtraction techniques. In vivo, the complete peripheral arterial bed of six patients was studied, from the aorto-iliac bifurcation down to the distal run-off. By measuring the signal intensity (SI) over the lumen of a vessel in the MIP, an SI-plot was obtained. Next, the vessel boundaries were determined using a threshold algorithm; from these boundary points individual diameter values could be obtained along the trajectory of the vessel. In an in vitro study, an optimal threshold value of 30% of the range of SI-values between the background and the maximal SI in the vessel was obtained for accurate diameter measurement in Gd CE MRA (i.e., full-width 30%-maximum). Furthermore, the relationship between the accuracy of these measurements and the scan resolution was investigated. Accuracy was found to be acceptable (i.e., less than 10% over/underestimation) for vessel sizes covering at least 3 pixels. In six patients, diameters were measured in MIPs of the total datasets (i.e., DT) as well as in selective MIPs of the clipped datasets (i.e., DS) (n = 209). DT and DS were statistically significantly correlated (p <0.01) with a Pearson correlation coefficient rP = 0.98. Measurements in the total MIPs yielded statistically significant (p <0.01) smaller diameter values compared with measurements in selective MIPs, with a mean difference of 0.15 mm. Diameter values from the selective MIPs of the aorto-iliac arteries were also compared with diameter values measured at corresponding anatomic positions in X-ray angiograms of these patients (i.e., DX) (n = 70). DX and DS were statistically significantly correlated (p <0.01) with a Pearson correlation coefficient rP = 0.92. Diameters measured in the selective MIPs were smaller than those measured in the X-ray angiograms (mean difference 0.49 mm) and this difference was statistically significant (p <0.01). In conclusion, diameter values can be evaluated accurately in MIPs of vessels with at least 3 pixels in diameter, using the full-width 30%-maximum criterion
    corecore