104 research outputs found

    Effect of competitive acoustic environments on speech intelligibility

    Get PDF
    Excessive noise and reverberation times degrade listening abilities in everyday life environments. This is particularly true for school settings. Most classrooms in Italy are settled in historical buildings that generate competitive acoustic environments. So far, few studies investigated the effect of real acoustics on speech intelligibility and on the spatial release from masking, focusing more on laboratory conditions. Also, the effect of noise on speech intelligibility was widely investigated considering its energetic rather than its informational content. Therefore, a study involving normal hearing adults was performed presenting listening tests via headphone and considering the competitive real acoustics of two primary-school classrooms with reverberation time of 0.4 s and 3.1 s, respectively. The main objective was the investigation of the effect of reverberation and noise on the spatial release from masking to help the design of learning environments. Binaural room impulse responses were acquired, with noise sources at different azimuths from the listener’s head. The spatial release from masking was significantly affected by noise type and reverberation. Longer reverberation times brought to worst speech intelligibility, with speech recognition thresholds higher by 6 dB on average. Noise with an informational content was detrimental by 7 dB with respect to an energetic noise

    Western Gull Foraging Behavior as an Ecosystem State Indicator in Coastal California

    Get PDF
    With accelerating climate variability and change, novel approaches are needed to warn managers of changing ecosystem state and to identify appropriate management actions. One strategy is using indicator species—like seabirds as ecosystem sentinels—to monitor changes in marine environments. Here, we explore the utility of western gulls (Larus occidentalis) breeding on Southeast Farallon Island as a proxy of ecosystem state in coastal California by investigating the interannual variability in gull foraging behavior from 2013 to 2019 in relation to upwelling conditions, prey abundances, and overlap with humpback whales (Megaptera novaeangliae) as gulls frequently feed in association with whales. Western gulls have a flexible diet and forage on land and at-sea. We combined gull GPS tracking data during the incubation phase, ecosystem survey data on multiple predator and prey species, and derived oceanographic upwelling products. When foraging at sea, gulls overlapped with cool upwelled waters. During 2015–2017, 25% more gull foraging trips visited land than in other years, where land trips were on average ∼8 h longer and 40% further than sea trips, which coincided with high compression of coastally upwelled waters (habitat compression) in 2015–2016. Gull foraging behavior was related to local prey abundances, where more foraging occurred near shore or on land when prey abundances were low. However, visual surveys indicated that ∼70% of humpback whale observations co-occurred with gulls, and the year with the most foraging on land (2017) corresponded to regionally low relative whale abundances, suggesting gull movement patterns could be an indicator of whale presence. Further, both whales and gulls forage near-shore under high upwelling habitat compression and low krill abundance. Hence, the deployment of year-round tags on gulls with the capability of near real-time data accessibility could provide important fine-scale metrics for conservation and management of the threatened yet recovering eastern Pacific humpback whale population between infrequent and coarse surveys. Entanglement in fishing gear and ship strikes are major inhibitors to whale recovery and have increased concomitantly with human use of ocean resources. Moreover, as climate variability and change increase, novel indicators should be explored and implemented to inform marine spatial planning and protect species across multiple scales from new risks

    Foraging in marine habitats increases mercury concentrations in a generalist seabird

    Get PDF
    Methylmercury concentrations vary widely across geographic space and among habitat types, with marine and aquatic-feeding organisms typically exhibiting higher mercury concentrations than terrestrial-feeding organisms. However, there are few model organisms to directly compare mercury concentrations as a result of foraging in marine, estuarine, or terrestrial food webs. The ecological impacts of differential foraging may be especially important for generalist species that exhibit high plasticity in foraging habitats, locations, or diet. Here, we investigate whether foraging habitat, sex, or fidelity to a foraging area impact blood mercury concentrations in western gulls (Larus occidentalis) from three colonies on the US west coast. Cluster analyses showed that nearly 70% of western gulls foraged primarily in ocean or coastal habitats, whereas the remaining gulls foraged in terrestrial and freshwater habitats. Gulls that foraged in ocean or coastal habitats for half or more of their foraging locations had 55% higher mercury concentrations than gulls that forage in freshwater and terrestrial habitats. Ocean-foraging gulls also had lower fidelity to a specific foraging area than freshwater and terrestrial-foraging gulls, but fidelity and sex were unrelated to gull blood mercury concentrations in all models. These findings support existing research that has described elevated mercury levels in species using aquatic habitats. Our analyses also demonstrate that gulls can be used to detect differences in contaminant exposure over broad geographic scales and across coarse habitat types, a factor that may influence gull health and persistence of other populations that forage across the land-sea gradient

    Nurses' perceptions of aids and obstacles to the provision of optimal end of life care in ICU

    Get PDF
    Contains fulltext : 172380.pdf (publisher's version ) (Open Access

    Masking versus cognition during speech recognition in noise and reverberation: Can different sentence tests provide a quantitative estimate?

    Full text link
    This study investigates the effect of noise and reverberation on speech recognition for an open- and a closed-set sentence test. While both tests yield approximately the same recognition threshold in trained normal hearing listeners, their performance may differ due to cognitive factors, i.e., the closed-set test is more sensitive to training effects while the open-set test is more affected by language familiarity. The experimental data were compared to predictions of the speech transmission index as a measure of pure acoustic effects. The largest differences between the open- and closed-set speech tests were measured in reverberation indicating a considerable influence of non-acoustic, cognitive factors. The recognition scores were on average 50% higher for the closed-set test with syntactically fixed and semantically unpredictable sentences than for the open-set test consisting of everyday sentences. To examine the underlying reasons, the closed-set test was presented to naïve listeners, with no training prior the measurements and no information about the test’s structure. Removing this information, the differences between the tests were not present indicating that the degree of familiarity with the speech material has a major impact on speech recognition. This indicates a strong cognitive factor which cannot be predicted by the speech transmission index
    corecore