48,374 research outputs found

    Real-time Bidding for Online Advertising: Measurement and Analysis

    Get PDF
    The real-time bidding (RTB), aka programmatic buying, has recently become the fastest growing area in online advertising. Instead of bulking buying and inventory-centric buying, RTB mimics stock exchanges and utilises computer algorithms to automatically buy and sell ads in real-time; It uses per impression context and targets the ads to specific people based on data about them, and hence dramatically increases the effectiveness of display advertising. In this paper, we provide an empirical analysis and measurement of a production ad exchange. Using the data sampled from both demand and supply side, we aim to provide first-hand insights into the emerging new impression selling infrastructure and its bidding behaviours, and help identifying research and design issues in such systems. From our study, we observed that periodic patterns occur in various statistics including impressions, clicks, bids, and conversion rates (both post-view and post-click), which suggest time-dependent models would be appropriate for capturing the repeated patterns in RTB. We also found that despite the claimed second price auction, the first price payment in fact is accounted for 55.4% of total cost due to the arrangement of the soft floor price. As such, we argue that the setting of soft floor price in the current RTB systems puts advertisers in a less favourable position. Furthermore, our analysis on the conversation rates shows that the current bidding strategy is far less optimal, indicating the significant needs for optimisation algorithms incorporating the facts such as the temporal behaviours, the frequency and recency of the ad displays, which have not been well considered in the past.Comment: Accepted by ADKDD '13 worksho

    Competing electronic orders on Kagome lattices at van Hove filling

    Full text link
    The electronic orders in Hubbard models on a Kagome lattice at van Hove filling are of intense current interest and debate. We study this issue using the singular-mode functional renormalization group theory. We discover a rich variety of electronic instabilities under short range interactions. With increasing on-site repulsion UU, the system develops successively ferromagnetism, intra unit-cell antiferromagnetism, and charge bond order. With nearest-neighbor Coulomb interaction VV alone (U=0), the system develops intra-unit-cell charge density wave order for small VV, s-wave superconductivity for moderate VV, and the charge density wave order appears again for even larger VV. With both UU and VV, we also find spin bond order and chiral dx2βˆ’y2+idxyd_{x^2 - y^2} + i d_{xy} superconductivity in some particular regimes of the phase diagram. We find that the s-wave superconductivity is a result of charge density wave fluctuations and the squared logarithmic divergence in the pairing susceptibility. On the other hand, the d-wave superconductivity follows from bond order fluctuations that avoid the matrix element effect. The phase diagram is vastly different from that in honeycomb lattices because of the geometrical frustration in the Kagome lattice.Comment: 8 pages with 9 color figure

    Phase change convective heat transfer in high porosity cellular metal foams

    No full text
    This Chapter discusses phase change convective heat transfer of high porosity cellular metal foams and their practical applications in thermal energy storage (TES). The following theoretical aspects are covered: volume-averaging method, Brinkman-Forchheimer porous flow model, two-equation non-thermal equilibrium heat transfer model, enthalpy method, and phase field method. Based on these models, metal foams have been investigated in two applications: metal foam-embedded phase change materials (PCMs), and metal foam-enhanced cascaded TES. The results indicate that metal foams can improve heat and exergy transfer rates in these applications by factors between 2 and 10
    • …
    corecore