242 research outputs found

    JoTR: A Joint Transformer and Reinforcement Learning Framework for Dialog Policy Learning

    Full text link
    Dialogue policy learning (DPL) is a crucial component of dialogue modelling. Its primary role is to determine the appropriate abstract response, commonly referred to as the "dialogue action". Traditional DPL methodologies have treated this as a sequential decision problem, using pre-defined action candidates extracted from a corpus. However, these incomplete candidates can significantly limit the diversity of responses and pose challenges when dealing with edge cases, which are scenarios that occur only at extreme operating parameters. To address these limitations, we introduce a novel framework, JoTR. This framework is unique as it leverages a text-to-text Transformer-based model to generate flexible dialogue actions. Unlike traditional methods, JoTR formulates a word-level policy that allows for a more dynamic and adaptable dialogue action generation, without the need for any action templates. This setting enhances the diversity of responses and improves the system's ability to handle edge cases effectively. In addition, JoTR employs reinforcement learning with a reward-shaping mechanism to efficiently finetune the word-level dialogue policy, which allows the model to learn from its interactions, improving its performance over time. We conducted an extensive evaluation of JoTR to assess its effectiveness. Our extensive evaluation shows that JoTR achieves state-of-the-art performance on two benchmark dialogue modelling tasks, as assessed by both user simulators and human evaluators.Comment: Our code, models and other related resources are publicly available at https://github.com/KwanWaiChung/JoT

    Orientation-Shared Convolution Representation for CT Metal Artifact Learning

    Full text link
    During X-ray computed tomography (CT) scanning, metallic implants carrying with patients often lead to adverse artifacts in the captured CT images and then impair the clinical treatment. Against this metal artifact reduction (MAR) task, the existing deep-learning-based methods have gained promising reconstruction performance. Nevertheless, there is still some room for further improvement of MAR performance and generalization ability, since some important prior knowledge underlying this specific task has not been fully exploited. Hereby, in this paper, we carefully analyze the characteristics of metal artifacts and propose an orientation-shared convolution representation strategy to adapt the physical prior structures of artifacts, i.e., rotationally symmetrical streaking patterns. The proposed method rationally adopts Fourier-series-expansion-based filter parametrization in artifact modeling, which can better separate artifacts from anatomical tissues and boost the model generalizability. Comprehensive experiments executed on synthesized and clinical datasets show the superiority of our method in detail preservation beyond the current representative MAR methods. Code will be available at \url{https://github.com/hongwang01/OSCNet
    • …
    corecore