43 research outputs found

    Acceptance of IWBs Instruction and Concomitant Behavior through Self-regulation Learning

    Get PDF
    The integration of interactive whiteboards into the classroom has been promoted as a key step in bridging the ICT age. The reason that interactive whiteboard enables students to access up-to-date information via interactive learning environment. This study was to investigate the perception of teachers regarding the impact of interactive whiteboards initiative. The technology acceptance model was used as the theoretical framework but self-regulated learning was added as a possible moderating factor. Data analysis was applied by SEM technique. The conclusions were: (1) there are highly recognitions on the perceived ease of use (PEU) and perceived usefulness (PU);(2) there is a strong behavior intention (BI) to use IWBs; (3) there are positive relationship between PEU, PU, and BI; (4) BI has a direct impact on the actual use (AU); (5) the strategy of self-regulated learning was found to moderate the relationship between BI and AU

    Global versus local brand: perceived quality and status-seeking motivation in the automobile industry

    Get PDF
    The purpose of this research is to examine the influence of status-seeking motivation on perceived quality of a global versus local automobile brand in Malaysia. The data for this research was collected through 303 questionnaires from young working adults within the Klang Valley. Data was analysed using repeated measure t-test and results show that a global brand is generally preferred in terms of perceived quality in regards to wealth, achievement and enhance social standings. Likewise, regardless of high or low status-seeking motivation, a global brand is still preferred over a local brand

    In Vitro Response of Retinal Pigment Epithelial Cells Exposed to Chitosan Materials Prepared with Different Cross-Linkers

    Get PDF
    The interaction between cells and biopolymers is the evaluation indicator of the biocompatibility of materials. The purpose of this work was to examine the responses of retinal pigment epithelial (RPE) cells to genipin (GP) or glutaraldehyde (GTA) cross-linked chitosan by means of cell viability assays, cytokine expression analyses, and apoptosis assays. Evaluations of non-cross-linked chitosan were conducted simultaneously for comparison. Both GP and GTA treated samples with the same extent of cross-linking (around 80%) were prepared by varying cross-linking time. Our results showed that GP cross-linking was carried out by either radical polymerization of the monomers or SN2 nucleophilic substitution reaction involving the replacement of the ester group on the monomer with a secondary amide linkage. On the other hand, GTA could react with free amino groups of chitosan, leading to the formation of either the Schiff bases or the Michael-type adducts with terminal aldehydes. The biocompatibility of non-cross-linked chitosan membranes was demonstrated by the absence of any signs of toxicity or inflammation reaction. The present study showed that the ARPE-19 cells exposed to GTA cross-linked chitosan membranes had significantly higher cytotoxicity, interleukin-6 levels, and number of TUNEL-positive nuclei than did those exposed to GP treated samples. In addition, the materials modified with GTA trigger apoptosis at an early stage and may induce toxicity in the RPE cells later. The findings suggest that while the chitosan molecules bridged by GP are satisfactorily cytocompatible, the counterparts treated by GTA do not seem to be tolerated. In terms of material safety, the GP cross-linked chitosan may be compatible with human RPE cells and may have a potential application as delivery carriers in the treatment of posterior segment diseases

    Metal Oxide Gas Sensors: Sensitivity and Influencing Factors

    Get PDF
    Conductometric semiconducting metal oxide gas sensors have been widely used and investigated in the detection of gases. Investigations have indicated that the gas sensing process is strongly related to surface reactions, so one of the important parameters of gas sensors, the sensitivity of the metal oxide based materials, will change with the factors influencing the surface reactions, such as chemical components, surface-modification and microstructures of sensing layers, temperature and humidity. In this brief review, attention will be focused on changes of sensitivity of conductometric semiconducting metal oxide gas sensors due to the five factors mentioned above

    MicroRNA profiling in ischemic injury of the gracilis muscle in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To profile the expression of microRNAs (miRNAs) and their potential target genes in the gracilis muscles following ischemic injury in rats by monitoring miRNA and mRNA expression on a genome-wide basis.</p> <p>Methods</p> <p>Following 4 h of ischemia and subsequent reperfusion for 4 h of the gracilis muscles, the specimens were analyzed with an Agilent rat miRNA array to detect the expressed miRNAs in the experimental muscles compared to those from the sham-operated controls. Their expressions were subsequently quantified by real-time reverse transcription polymerase chain reaction (real-time RT-PCR) to determine their expression pattern after different durations of ischemia and reperfusion. In addition, the expression of the mRNA in the muscle specimens after 4 h of ischemia and reperfusion for 1, 3, 7, and 14 d were detected with the Agilent Whole Rat Genome 4 × 44 k oligo microarray. A combined approach using a computational prediction algorithm that included miRanda, PicTar, TargetScanS, MirTarget2, RNAhybrid, and the whole genome microarray experiment was performed by monitoring the mRNA:miRNA association to identify potential target genes.</p> <p>Results</p> <p>Three miRNAs (miR-21, miR-200c, and miR-205) of 350 tested rat miRNAs were found to have an increased expression in the miRNA array. Real-time RT-PCR demonstrated that, with 2-fold increase after 4 h of ischemia, a maximum 24-fold increase at 7 d, and a 7.5-fold increase at 14 d after reperfusion, only the miR-21, but not the miR-200c or miR-205 was upregulated throughout the experimental time. In monitoring the target genes of miR-21 in the expression array at 1, 3, 7, 14 d after reperfusion, with persistent expression throughout the experiment, we detected the same 4 persistently downregulated target genes (<it>Nqo1</it>, <it>Pdpn</it>, <it>CXCL3</it>, and <it>Rad23b</it>) with the prediction algorithms miRanda and RNAhybrid, but no target gene was revealed with PicTar, TargetScanS, and MirTarget2.</p> <p>Conclusions</p> <p>This study revealed 3 upregulated miRNAs in the gracilis muscle following ischemic injury and identified 4 potential target genes of miR-21 by examining miRNAs and mRNAs expression patterns in a time-course fashion using a combined approach with prediction algorithms and a whole genome expression array experiment.</p
    corecore