81 research outputs found
Improved Visible Light Photocatalytic Activity for TiO 2
S/Zn codoped TiO2 nanomaterials were synthesized by a sol-gel method. X-ray diffraction, UV-vis diffuse reflectance spectroscopy, transmission electron microscopy, photoluminescence spectroscopy, and X-ray photoelectron spectroscopy were used to characterize the morphology, structure, and optical properties of the prepared samples. The introduction of Zn and S resulted in significant red shift of absorption edge for TiO2-based nanomaterials. The photocatalytic activity was evaluated by degrading reactive brilliant red X-3B solution under simulated sunlight irradiation. The results showed S/Zn codoped TiO2 exhibited higher photocatalytic activity than pure TiO2 and commercial P25, due to the photosynergistic effect of obvious visible light absorption, efficient separation of photoinduced charge carriers, and large surface area. Moreover, the content of Zn and S in the composites played important roles in photocatalytic activity of TiO2-based nanomaterials
Arrhythmia Classification Algorithm Based on Multi-Feature and Multi-type Optimized SVM
The electrocardiogram (ECG) signal feature extraction and classification diagnosis algorithm is proposed to address the high incidence of heart disease and difficulty in self-detection. First, the collected ECG signals are preprocessed to remove the noise of the ECG signals. Next, wavelet packet decomposition is used to perform a four-layer transformation on the denoised ECG signal and the 16 obtained wavelet packet coefficients analyzed statistically. Next, the slope threshold method is used to extract the R-peak of the denoised ECG signal. The RR interval can be calculated according to the extracted R peak. The extracted statistical features and time domain RR interval features are combined into a multi-domain feature space. Finally, the particle swarm optimization algorithm (PSO), genetic algorithm (GA), and grid search (GS) algorithms are applied to optimize the support vector machine (SVM). The optimized SVM is utilized to classify the extracted multi-domain features. Classification results show the proposed algorithm can classify six types of ECG beats accurately. The classification efficiency achieved by PSO, GA, and GS are 97.78%, 98.33%, and 98.89%, respectively
The Structural, Electronic, and Optical Properties of Ge/Si Quantum Wells: Lasing at a Wavelength of 1550 nm
The realization of a fully integrated group IV electrically driven laser at room temperature is an essential issue to be solved. We introduced a novel group IV side-emitting laser at a wavelength of 1550 nm based on a 3-layer Ge/Si quantum well (QW). By designing this scheme, we showed that the structural, electronic, and optical properties are excited for lasing at 1550 nm. The preliminary results show that the device can produce a good light spot shape convenient for direct coupling with the waveguide and single-mode light emission. The laser luminous power can reach up to 2.32 mW at a wavelength of 1550 nm with a 300-mA current. Moreover, at room temperature (300 K), the laser can maintain maximum light power and an ideal wavelength (1550 nm). Thus, this study provides a novel approach to reliable, efficient electrically pumped silicon-based lasers
Evolution of structural, mechanical and tribological properties of Ni-P/MWCNT coatings as a function of annealing temperature
Collaborative research project Hardalt (Grant No. 606110) funded by the EU's seventh framework programme
Progress in Tribological Properties of Nano-Composite Hard Coatings under Water Lubrication
The tribological properties, under water-lubricated conditions, of three major nano-composite coatings, i.e., diamond-like carbon (DLC or a-C), amorphous carbon nitride (a-CNx) and transition metallic nitride-based (TiN-based, CrN-based), coatings are reviewed. The influences of microstructure (composition and architecture) and test conditions (counterparts and friction parameters) on their friction and wear behavior under water lubrication are systematically elucidated. In general, DLC and a-CNx coatings exhibit superior tribological performance under water lubrication due to the formation of the hydrophilic group and the lubricating layer with low shear strength, respectively. In contrast, TiN-based and CrN-based coatings present relatively poor tribological performance in pure water, but are expected to present promising applications in sea water because of their good corrosion resistance. No matter what kind of coatings, an appropriate selection of counterpart materials would make their water-lubricated tribological properties more prominent. Currently, Si-based materials are deemed as beneficial counterparts under water lubrication due to the formation of silica gel originating from the hydration of Si. In the meantime, the tribological properties of nano-composite coatings in water could be enhanced at appropriate normal load and sliding velocity due to mixed or hydrodynamic lubrication. At the end of this article, the main research that is now being developed concerning the development of nano-composite coatings under water lubrication is described synthetically
Low-friction behavior of hard solid coatings in water environment
Hard solid coatings such as DLC, a-CNX, and metallic nitride show low friction and low wear behaviors as they slide against different mating balls in a water environment. The water lubrication properties of hard solid coatings are related to the composition, structure, and physicochemical properties of tribo-materials. If the mating materials are easily hydrated, the hard solid coatings exhibit low specific wear rate
- …