32,257 research outputs found

    Structural health monitoring of offshore wind turbines: A review through the Statistical Pattern Recognition Paradigm

    Get PDF
    Offshore Wind has become the most profitable renewable energy source due to the remarkable development it has experienced in Europe over the last decade. In this paper, a review of Structural Health Monitoring Systems (SHMS) for offshore wind turbines (OWT) has been carried out considering the topic as a Statistical Pattern Recognition problem. Therefore, each one of the stages of this paradigm has been reviewed focusing on OWT application. These stages are: Operational Evaluation; Data Acquisition, Normalization and Cleansing; Feature Extraction and Information Condensation; and Statistical Model Development. It is expected that optimizing each stage, SHMS can contribute to the development of efficient Condition-Based Maintenance Strategies. Optimizing this strategy will help reduce labor costs of OWTs׳ inspection, avoid unnecessary maintenance, identify design weaknesses before failure, improve the availability of power production while preventing wind turbines׳ overloading, therefore, maximizing the investments׳ return. In the forthcoming years, a growing interest in SHM technologies for OWT is expected, enhancing the potential of offshore wind farm deployments further offshore. Increasing efficiency in operational management will contribute towards achieving UK׳s 2020 and 2050 targets, through ultimately reducing the Levelised Cost of Energy (LCOE)

    Political Homophily in Independence Movements: Analysing and Classifying Social Media Users by National Identity

    Get PDF
    Social media and data mining are increasingly being used to analyse political and societal issues. Here we undertake the classification of social media users as supporting or opposing ongoing independence movements in their territories. Independence movements occur in territories whose citizens have conflicting national identities; users with opposing national identities will then support or oppose the sense of being part of an independent nation that differs from the officially recognised country. We describe a methodology that relies on users' self-reported location to build large-scale datasets for three territories -- Catalonia, the Basque Country and Scotland. An analysis of these datasets shows that homophily plays an important role in determining who people connect with, as users predominantly choose to follow and interact with others from the same national identity. We show that a classifier relying on users' follow networks can achieve accurate, language-independent classification performances ranging from 85% to 97% for the three territories.Comment: Accepted for publication in IEEE Intelligent System

    Making the Most of Tweet-Inherent Features for Social Spam Detection on Twitter

    Get PDF
    Social spam produces a great amount of noise on social media services such as Twitter, which reduces the signal-to-noise ratio that both end users and data mining applications observe. Existing techniques on social spam detection have focused primarily on the identification of spam accounts by using extensive historical and network-based data. In this paper we focus on the detection of spam tweets, which optimises the amount of data that needs to be gathered by relying only on tweet-inherent features. This enables the application of the spam detection system to a large set of tweets in a timely fashion, potentially applicable in a real-time or near real-time setting. Using two large hand-labelled datasets of tweets containing spam, we study the suitability of five classification algorithms and four different feature sets to the social spam detection task. Our results show that, by using the limited set of features readily available in a tweet, we can achieve encouraging results which are competitive when compared against existing spammer detection systems that make use of additional, costly user features. Our study is the first that attempts at generalising conclusions on the optimal classifiers and sets of features for social spam detection over different datasets
    corecore