420,254 research outputs found

    Dynamical Mean Field Theory of Nickelate Superlattices

    Full text link
    Dynamical mean field methods are used to calculate the phase diagram, many-body density of states, relative orbital occupancy and Fermi surface shape for a realistic model of LaNiO3LaNiO_3-based superlattices. The model is derived from density functional band calculations and includes oxygen orbitals. The combination of the on-site Hunds interaction and charge-transfer between the transition metal and the oxygen orbitals is found to reduce the orbital polarization far below the levels predicted either by band structure calculations or by many-body analyses of Hubbard-type models which do not explicitly include the oxygen orbitals. The findings indicate that heterostructuring is unlikely to produce one band model physics and demonstrate the fundamental inadequacy of modeling the physics of late transition metal oxides with Hubbard-like models.Comment: Values of orbitals polarizations reported in Fig. 2 corrected. We thank E. Benckiser and M. Wu for pointing out the error

    Knot in Cen A: Stochastic Magnetic Field for Diffusive Synchrotron Radiation?

    Full text link
    The emission of relativistic electrons moving in the random and small-scale magnetic field is presented by diffusive synchrotron radiation (DSR). In this Letter, we revisit the perturbative treatment of DSR. We propose that random and small-scale magnetic field might be generated by the turbulence. As an example, multi-band radiation of the knot in Cen A comes from the electrons with energy Îłe∌103−104\gamma_e\sim 10^3-10^4 in the magnetic field of 10−3G10^{-3}G. The multi-band spectrum of DSR is well determined by the feature of stochastic magnetic field. These results put strong constraint to the models of particle acceleration.Comment: accepted by ApJL, comments are welcom

    Squark-mediated Higgs+jets production at the LHC

    Get PDF
    We investigate possible scenarios of light-squark production at the LHC as a new mechanism to produce Higgs bosons in association with jets. The study is motivated by the SUSY search for H+jets events, performed by the CMS collaboration on 8 and 13 TeV data using the razor variables. Two simplified models are proposed to interpret the observations in this search. The constraint from Run I and the implications for Run II and beyond are discussed

    Spin and Orbital Splitting in Ferromagnetic Contacted Single Wall Carbon Nanotube Devices

    Full text link
    We observed the coulomb blockade phenomena in ferromagnetic contacting single wall semiconducting carbon nanotube devices. No obvious Coulomb peaks shift was observed with existing only the Zeeman splitting at 4K. Combining with other effects, the ferromagnetic leads prevent the orbital spin states splitting with magnetic field up to 2 Tesla at 4K. With increasing magnetic field further, both positive or negative coulomb peaks shift slopes are observed associating with clockwise and anticlockwise orbital state splitting. The strongly suppressed/enhanced of the conductance has been observed associating with the magnetic field induced orbital states splitting/converging

    Characterization of Polyphosphoesters by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    Get PDF
    FT-ICR mass spectrometry, together with collision-induced dissociation and electron capture dissociation, has been used to characterize the polyphosphoester poly[1,4-bis(hydroxyethyl)terephthalate-alt-ethyloxyphosphate] and its degradation products. Three degradation pathways were elucidated: hydrolysis of the phosphate–[1,4-bis(hydroxyethyl)terephthalate]bonds; hydrolysis of the phosphate–ethoxy bonds; and hydrolysis of the ethyl–terephthalate bonds. The dominant degradation reactions were those that involved the phosphate groups. This work constitutes the first application of mass spectrometry to the characterization of polyphosphoesters and demonstrates the suitability of high mass accuracy FT-ICR mass spectrometry, with CID and ECD, for the structural analysis of polyphosphoesters and their degradation products

    Dimpling process in cold roll metal forming by finite element modelling and experimental validation

    Get PDF
    The dimpling process is a novel cold-roll forming process that involves dimpling of a rolled flat strip prior to the roll forming operation. This is a process undertaken to enhance the material properties and subsequent products’ structural performance while maintaining a minimum strip thickness. In order to understand the complex and interrelated nonlinear changes in contact, geometry and material properties that occur in the process, it is necessary to accurately simulate the process and validate through physical tests. In this paper, 3D non-linear finite element analysis was employed to simulate the dimpling process and mechanical testing of the subsequent dimpled sheets, in which the dimple geometry and material properties data were directly transferred from the dimpling process. Physical measurements, tensile and bending tests on dimpled sheet steel were conducted to evaluate the simulation results. Simulation of the dimpling process identified the amount of non-uniform plastic strain introduced and the manner in which this was distributed through the sheet. The plastic strain resulted in strain hardening which could correlate to the increase in the strength of the dimpled steel when compared to plain steel originating from the same coil material. A parametric study revealed that the amount of plastic strain depends upon on the process parameters such as friction and overlapping gap between the two forming rolls. The results derived from simulations of the tensile and bending tests were in good agreement with the experimental ones. The validation indicates that the finite element analysis was able to successfully simulate the dimpling process and mechanical properties of the subsequent dimpled steel products

    Spin squeezing in nonlinear spin coherent states

    Full text link
    We introduce the nonlinear spin coherent state via its ladder operator formalism and propose a type of nonlinear spin coherent state by the nonlinear time evolution of spin coherent states. By a new version of spectroscopic squeezing criteria we study the spin squeezing in both the spin coherent state and nonlinear spin coherent state. The results show that the spin coherent state is not squeezed in the x, y, and z directions, and the nonlinear spin coherent state may be squeezed in the x and y directions.Comment: 4 pages, 2 figs, revised version submitted to J. Opt.
    • 

    corecore