135 research outputs found

    A Dependency-Based Neural Network for Relation Classification

    Full text link
    Previous research on relation classification has verified the effectiveness of using dependency shortest paths or subtrees. In this paper, we further explore how to make full use of the combination of these dependency information. We first propose a new structure, termed augmented dependency path (ADP), which is composed of the shortest dependency path between two entities and the subtrees attached to the shortest path. To exploit the semantic representation behind the ADP structure, we develop dependency-based neural networks (DepNN): a recursive neural network designed to model the subtrees, and a convolutional neural network to capture the most important features on the shortest path. Experiments on the SemEval-2010 dataset show that our proposed method achieves state-of-art results.Comment: This preprint is the full version of a short paper accepted in the annual meeting of the Association for Computational Linguistics (ACL) 2015 (Beijing, China

    Learning to Retrieve In-Context Examples for Large Language Models

    Full text link
    Large language models (LLMs) have demonstrated their ability to learn in-context, allowing them to perform various tasks based on a few input-output examples. However, the effectiveness of in-context learning is heavily reliant on the quality of the selected examples. In this paper, we propose a novel framework to iteratively train dense retrievers that can identify high-quality in-context examples for LLMs. Our framework initially trains a reward model based on LLM feedback to evaluate the quality of candidate examples, followed by knowledge distillation to train a bi-encoder based dense retriever. Our experiments on a suite of 30 tasks demonstrate that our framework significantly enhances in-context learning performance. Furthermore, we show the generalization ability of our framework to unseen tasks during training. An in-depth analysis reveals that our model improves performance by retrieving examples with similar patterns, and the gains are consistent across LLMs of varying sizes.Comment: 16 page

    Query2doc: Query Expansion with Large Language Models

    Full text link
    This paper introduces a simple yet effective query expansion approach, denoted as query2doc, to improve both sparse and dense retrieval systems. The proposed method first generates pseudo-documents by few-shot prompting large language models (LLMs), and then expands the query with generated pseudo-documents. LLMs are trained on web-scale text corpora and are adept at knowledge memorization. The pseudo-documents from LLMs often contain highly relevant information that can aid in query disambiguation and guide the retrievers. Experimental results demonstrate that query2doc boosts the performance of BM25 by 3% to 15% on ad-hoc IR datasets, such as MS-MARCO and TREC DL, without any model fine-tuning. Furthermore, our method also benefits state-of-the-art dense retrievers in terms of both in-domain and out-of-domain results.Comment: 9 page

    Learning to Rank in Generative Retrieval

    Full text link
    Generative retrieval is a promising new paradigm in text retrieval that generates identifier strings of relevant passages as the retrieval target. This paradigm leverages powerful generation models and represents a new paradigm distinct from traditional learning-to-rank methods. However, despite its rapid development, current generative retrieval methods are still limited. They typically rely on a heuristic function to transform predicted identifiers into a passage rank list, which creates a gap between the learning objective of generative retrieval and the desired passage ranking target. Moreover, the inherent exposure bias problem of text generation also persists in generative retrieval. To address these issues, we propose a novel framework, called LTRGR, that combines generative retrieval with the classical learning-to-rank paradigm. Our approach involves training an autoregressive model using a passage rank loss, which directly optimizes the autoregressive model toward the optimal passage ranking. This framework only requires an additional training step to enhance current generative retrieval systems and does not add any burden to the inference stage. We conducted experiments on three public datasets, and our results demonstrate that LTRGR achieves state-of-the-art performance among generative retrieval methods, indicating its effectiveness and robustness

    In-context Autoencoder for Context Compression in a Large Language Model

    Full text link
    We propose the In-context Autoencoder (ICAE) for context compression in a large language model (LLM). The ICAE has two modules: a learnable encoder adapted with LoRA from an LLM for compressing a long context into a limited number of memory slots, and a fixed decoder which is the target LLM that can condition on the memory slots for various purposes. We first pretrain the ICAE using both autoencoding and language modeling objectives on massive text data, enabling it to generate memory slots that accurately and comprehensively represent the original context. Then, we fine-tune the pretrained ICAE on a small amount of instruct data to enhance its interaction with various prompts for producing desirable responses. Our experimental results demonstrate that the ICAE learned with our proposed pretraining and fine-tuning paradigm can effectively produce memory slots with 4×4\times context compression, which can be well conditioned on by the target LLM to respond to various prompts. The promising results demonstrate significant implications of the ICAE for its novel approach to the long context problem and its potential to reduce computation and memory overheads for LLM inference in practice, suggesting further research effort in context management for an LLM. Our code and data will be released shortly.Comment: Work in progres
    • …
    corecore