45 research outputs found

    Object-Oriented Dynamics Learning through Multi-Level Abstraction

    Full text link
    Object-based approaches for learning action-conditioned dynamics has demonstrated promise for generalization and interpretability. However, existing approaches suffer from structural limitations and optimization difficulties for common environments with multiple dynamic objects. In this paper, we present a novel self-supervised learning framework, called Multi-level Abstraction Object-oriented Predictor (MAOP), which employs a three-level learning architecture that enables efficient object-based dynamics learning from raw visual observations. We also design a spatial-temporal relational reasoning mechanism for MAOP to support instance-level dynamics learning and handle partial observability. Our results show that MAOP significantly outperforms previous methods in terms of sample efficiency and generalization over novel environments for learning environment models. We also demonstrate that learned dynamics models enable efficient planning in unseen environments, comparable to true environment models. In addition, MAOP learns semantically and visually interpretable disentangled representations.Comment: Accepted to the Thirthy-Fourth AAAI Conference On Artificial Intelligence (AAAI), 202

    Size Effect in Non-equilibrium Molecular Dynamics

    Get PDF
    Direct method is commonly used to compute the thermal conductivity of a nanoscale material after molecular dynamics simulation. Direct method simply applies Fourier\u27s Law to get the value of thermal conductivity, which requires heat flux, cross sectional area and temperature gradient. A typical structure includes one heat source, one heat sink and a device region between them. Although it is usually assumed that the temperature gradient is a constant through the entire device region, the temperature profile is not linear for a material in nanoscale because phonon mean free path is comparable to the size of the whole system. Furthermore, bath length and device length can have influence on temperature profile. In this project, two methods of temperature gradient computing and the size effect of each method are discussed. Method 1 uses the center region of the device to get temperature gradient and method 2 uses the temperature difference between hot bath and cold bath divided by the device length as temperature gradient. The thermal conductivity computed from Green-Kubo method is used as a standard to test the two calculation methods and the size effect. Argon with atomic weight 40 is used as the nanoscale material because of its moderate phonon mean free path. Result shows that both method 1 and method 2 can compute the bulk-limit thermal conductivity but the necessary size conditions are different. Method 1 requires a long device and method 2 requires a long bath region

    Appeal: Allow Mislabeled Samples the Chance to be Rectified in Partial Label Learning

    Full text link
    In partial label learning (PLL), each instance is associated with a set of candidate labels among which only one is ground-truth. The majority of the existing works focuses on constructing robust classifiers to estimate the labeling confidence of candidate labels in order to identify the correct one. However, these methods usually struggle to identify and rectify mislabeled samples. To help these mislabeled samples "appeal" for themselves and help existing PLL methods identify and rectify mislabeled samples, in this paper, we propose the first appeal-based PLL framework. Specifically, we introduce a novel partner classifier and instantiate it predicated on the implicit fact that non-candidate labels of a sample should not be assigned to it, which is inherently accurate and has not been fully investigated in PLL. Furthermore, a novel collaborative term is formulated to link the base classifier and the partner one. During each stage of mutual supervision, both classifiers will blur each other's predictions through a blurring mechanism to prevent overconfidence in a specific label. Extensive experiments demonstrate that the appeal and disambiguation ability of several well-established stand-alone and deep-learning based PLL approaches can be significantly improved by coupling with this learning paradigm.Comment: Under review. An extended version of 2024 AAAI oral paper "Partial Label Learning with a Partner

    Symmetry-Aware Robot Design with Structured Subgroups

    Full text link
    Robot design aims at learning to create robots that can be easily controlled and perform tasks efficiently. Previous works on robot design have proven its ability to generate robots for various tasks. However, these works searched the robots directly from the vast design space and ignored common structures, resulting in abnormal robots and poor performance. To tackle this problem, we propose a Symmetry-Aware Robot Design (SARD) framework that exploits the structure of the design space by incorporating symmetry searching into the robot design process. Specifically, we represent symmetries with the subgroups of the dihedral group and search for the optimal symmetry in structured subgroups. Then robots are designed under the searched symmetry. In this way, SARD can design efficient symmetric robots while covering the original design space, which is theoretically analyzed. We further empirically evaluate SARD on various tasks, and the results show its superior efficiency and generalizability.Comment: The Fortieth International Conference on Machine Learning (ICML 2023

    Low-Rank Modular Reinforcement Learning via Muscle Synergy

    Full text link
    Modular Reinforcement Learning (RL) decentralizes the control of multi-joint robots by learning policies for each actuator. Previous work on modular RL has proven its ability to control morphologically different agents with a shared actuator policy. However, with the increase in the Degree of Freedom (DoF) of robots, training a morphology-generalizable modular controller becomes exponentially difficult. Motivated by the way the human central nervous system controls numerous muscles, we propose a Synergy-Oriented LeARning (SOLAR) framework that exploits the redundant nature of DoF in robot control. Actuators are grouped into synergies by an unsupervised learning method, and a synergy action is learned to control multiple actuators in synchrony. In this way, we achieve a low-rank control at the synergy level. We extensively evaluate our method on a variety of robot morphologies, and the results show its superior efficiency and generalizability, especially on robots with a large DoF like Humanoids++ and UNIMALs.Comment: 36th Conference on Neural Information Processing Systems (NeurIPS 2022

    Offline Meta Reinforcement Learning with In-Distribution Online Adaptation

    Full text link
    Recent offline meta-reinforcement learning (meta-RL) methods typically utilize task-dependent behavior policies (e.g., training RL agents on each individual task) to collect a multi-task dataset. However, these methods always require extra information for fast adaptation, such as offline context for testing tasks. To address this problem, we first formally characterize a unique challenge in offline meta-RL: transition-reward distribution shift between offline datasets and online adaptation. Our theory finds that out-of-distribution adaptation episodes may lead to unreliable policy evaluation and that online adaptation with in-distribution episodes can ensure adaptation performance guarantee. Based on these theoretical insights, we propose a novel adaptation framework, called In-Distribution online Adaptation with uncertainty Quantification (IDAQ), which generates in-distribution context using a given uncertainty quantification and performs effective task belief inference to address new tasks. We find a return-based uncertainty quantification for IDAQ that performs effectively. Experiments show that IDAQ achieves state-of-the-art performance on the Meta-World ML1 benchmark compared to baselines with/without offline adaptation

    Self-Organized Polynomial-Time Coordination Graphs

    Full text link
    Coordination graph is a promising approach to model agent collaboration in multi-agent reinforcement learning. It conducts a graph-based value factorization and induces explicit coordination among agents to complete complicated tasks. However, one critical challenge in this paradigm is the complexity of greedy action selection with respect to the factorized values. It refers to the decentralized constraint optimization problem (DCOP), which and whose constant-ratio approximation are NP-hard problems. To bypass this systematic hardness, this paper proposes a novel method, named Self-Organized Polynomial-time Coordination Graphs (SOP-CG), which uses structured graph classes to guarantee the accuracy and the computational efficiency of collaborated action selection. SOP-CG employs dynamic graph topology to ensure sufficient value function expressiveness. The graph selection is unified into an end-to-end learning paradigm. In experiments, we show that our approach learns succinct and well-adapted graph topologies, induces effective coordination, and improves performance across a variety of cooperative multi-agent tasks
    corecore