224 research outputs found
Novel Wavelet Threshold Denoising Method in Axle Press-Fit Zone Ultrasonic Detection
Axles are important part of railway locomotives and vehicles. Periodic ultrasonic inspection of axles can effectively detect and monitor axle fatigue cracks. However, in the axle press-fit zone, the complex interface contact condition reduces the signal-noise ratio (SNR). Therefore, the probability of false positives and false negatives increases. In this work, a novel wavelet threshold function is created to remove noise and suppress press-fit interface echoes in axle ultrasonic defect detection. The exponential threshold function proposed by Andria [1] can\u27t get a gradual curve for later optimum searching process; and the novel wavelet threshold function with two variables is designed to ensure the precision of optimum searching process. Based on the positive correlation between the correlation coefficient and SNR [2] and with the experiment phenomenon that the defect and the press-fit interface echo have different axle-circumferential correlation characteristics, a discrete optimum searching process for two undetermined variables in novel wavelet threshold function is conducted. The performance of the proposed method is assessed by comparing it with traditional threshold methods using real data. The statistic results of the amplitude and the peak SNR of defect echoes show that the proposed wavelet threshold denoising method not only maintains the amplitude of defect echoes but also has a higher peak SNR
Redox condition and organic carbon accumulation mechanism in the Cryogenian Nanhua Basin, South China: Insights from iron chemistry and sulfur, carbon, oxygen isotopes of the Datangpo Formation
Global glaciation, oxidation event and eukaryotic expansion and diversification in the Neoproterozoic period are marked events that characterize the early evolution of the Earth, but how the interactions occurred among these events is not well understood. The organic matters preserved in the black shales of the Datangpo Formation (Cryogenian period) are sensitive to redox conditions, and thus its accumulation and preservation offer beneficial clues to unravel the early evolutional history of the Earth. This study presents new chemostratigraphic data of iron component, TOC content, sulfur isotope of pyrite, carbon and oxygen isotopes of carbonaceous shale of the Datangpo Formation (Cryogenian period) in the Datangpo section, South China. The analyzed results imply abundant nutrients existing in the ocean in the Early Cryogenian. The nutrients, such as phosphorus, resulting from neighbor volcanic eruptions, provided nutrients that enabled microbes to flourish during the Cryogenian interglacial gap. Iron components and sulfur isotopes indicated anoxic, euxinic deep water environments for the black shales in the lower portion of the Datangpo Formation. The anoxic setting was good for the preservation of organic matter, but terrigenous materials inputs, as revealed by the high Al2O3 contents, diluted the organic carbon content (TOC).Cited as: Wang, C., Shi, G. Redox condition and organic carbon accumulation mechanism in the Cryogenian Nanhua Basin, South China: Insights from iron chemistry and sulfur, carbon, oxygen isotopes of the Datangpo Formation. Advances in Geo-Energy Research, 2019, 3(1): 67-75, doi: 10.26804/ager.2019.01.0
TaqMan probe array for quantitative detection of DNA targets
To date real-time quantitative PCR and gene expression microarrays are the methods of choice for quantification of nucleic acids. Herein, we described a unique fluorescence resonance energy transfer-based microarray platform for real-time quantification of nucleic acid targets that combines advantages of both and reduces their limitations. A set of 3′ amino-modified TaqMan probes were designed and immobilized on a glass slide composing a regular microarray pattern, and used as probes in the consecutive PCR carried out on the surface. During the extension step of the PCR, 5′ nuclease activity of DNA polymerase will cleave quencher dyes of the immobilized probe in the presence of nucleic acids targets. The increase of fluorescence intensities generated by the change in physical distance between reporter fluorophore and quencher moiety of the probes were collected by a confocal scanner. Using this new approach we successfully monitored five different pathogenic genomic DNAs and analyzed the dynamic characteristics of fluorescence intensity changes on the TaqMan probe array. The results indicate that the TaqMan probe array on a planar glass slide monitors DNA targets with excellent specificity as well as high sensitivity. This set-up offers the great advantage of real-time quantitative detection of DNA targets in a parallel array format
Development of an UAS for Earthquake Emergency Response and Its Application in Two Disastrous Earthquakes
To support humanitarian action after a disaster, we require reliable data like high-resolution satellite images for analyses aimed to define the damages of facilities and/or infrastructures. However, we cannot obtain satellite images in few days after an event. Thus, in situ surveys are preferred. Advances in unmanned aircraft system (UAS) have promoted them to become precious tools for capturing and assessing the extents and volume of damages. Safety, flexibility, low cost, and ease of operation make UAS suitable for disaster assessment. In this chapter, we developed an example of UAS for swiftly acquiring disaster information. With the selected fixed-wing UAS, we successfully performed data acquisition at specified scales. For the image analysis, we applied a photogrammetric workflow to deal with the very high resolution of the images obtained without ground control points. The results obtained from two destructive earthquakes demonstrated that the presented system plays a key role on the processes of investigating and gathering information about a disaster in the earthquake epicentral areas, like road detection, structural damage survey, secondary disaster investigation, and quick disaster assessment. It can effectively provide disaster information in hardly entered areas to salvation headquarters for rapidly developing the relief measures
Synthesis and investigation of deoxyribonucleic acid/locked nucleic acid chimeric molecular beacons
To take full advantage of locked nucleic acid (LNA) based molecular beacons (LNA-MBs) for a variety of applications including analysis of complex samples and intracellular monitoring, we have systematically synthesized a series of DNA/LNA chimeric MBs and studied the effect of DNA/LNA ratio in MBs on their thermodynamics, hybridization kinetics, protein binding affinity and enzymatic resistance. It was found that the LNA bases in a MB stem sequence had a significant effect on the stability of the hair-pin structure. The hybridization rates of LNA-MBs were significantly improved by lowering the DNA/LNA ratio in the probe, and most significantly, by having a shared-stem design for the LNA-MB to prevent sticky-end pairing. It was found that only MB sequences with DNA/LNA alternating bases or all LNA bases were able to resist nonspecific protein binding and DNase I digestion. Additional results showed that a sequence consisting of a DNA stretch less than three bases between LNA bases was able to block RNase H function. This study suggested that a shared-stem MB with a 4 base-pair stem and alternating DNA/LNA bases is desirable for intracellular applications as it ensures reasonable hybridization rates, reduces protein binding and resists nuclease degradation for both target and probes. These findings have implications on the design of LNA molecular probes for intracellular monitoring application, disease diagnosis and basic biological studies
7-Ketocholesterol Induces Autophagy in Vascular Smooth Muscle Cells through Nox4 and Atg4B
Oxidized lipoproteins stimulate autophagy in advanced atherosclerotic plaques. However, the mechanisms underlying autophagy induction and the role of autophagy in atherogenesis remain to be determined. This study was designed to investigate the mechanisms by which 7-ketocholesterol (7-KC), a major component of oxidized lipoproteins, induces autophagy. This study was also designed to determine the effect of autophagy induction on apoptosis, a central event in the development of atherosclerosis. Exposure of human aortic smooth muscle cells to 7-KC increased autophagic flux. Autophagy induction was suppressed by treating the cells with either a reactive oxygen species scavenger or an antioxidant. Administration of 7-KC concomitantly up-regulated Nox4 expression, increased intracellular hydrogen peroxide levels, and inhibited autophagy-related gene 4B activity. Catalase overexpression to remove hydrogen peroxide or Nox4 knockdown with siRNA reduced intracellular hydrogen peroxide levels, restored autophagy-related gene 4B activity, and consequently attenuated 7-KC–induced autophagy. Moreover, inhibition of autophagy aggravated both endoplasmic reticulum (ER) stress and cell death in response to 7-KC. In contrast, up-regulation of autophagic activity by rapamycin had opposite effects. Finally, activation of autophagy by chronic rapamycin treatment attenuated ER stress, apoptosis, and atherosclerosis in apolipoprotein E knockout (ApoE−/−) mouse aortas. In conclusion, we demonstrate that up-regulation of autophagy is a cellular protective response that attenuates 7-KC–induced cell death in human aortic smooth muscle cells
Interictal magnetoencephalographic findings related with surgical outcomes in lesional and nonlesional neocortical epilepsy
Purpose: To investigate whether interictal magnetoencephalography (MEG) concordant with other techniques can predict surgical outcome in patients with lesional and nonlesional refractory neocortical epilepsy (NE).
Methods: 23 Patients with lesional NE and 20 patients with nonlesional NE were studied. MEG was recorded for all patients with a 275 channel whole-head system. Synthetic aperture magnetometry (SAM) with excess kurtosis (g2) and conventional Equivalent Current Dipole (ECD) were used for MEG data analysis. 27 Patients underwent long-term extraoperative intracranial video electroencephalography (iVEEG) monitoring. Surgical outcomes were assessed based on more than 1-year of post-surgical follow-up using Engel classification system.
Results: As we expected, both favorable outcomes (Engel class I or II) and seizure freedom outcomes (Engel class IA) were higher for the concordance condition (MEG findings are concordant with MRI or iVEEG findings) versus the discordance condition. Also the seizure free rate was significantly higher (x2 = 5.24, P \u3c 0.05) for the patients with lesional NE than for the patients with nonlesional NE. In 30% of the patients with nonlesional NE, the MEG findings proved to be valuable for intracranial electrode implantation.
Conclusions: This study demonstrates that a favorable post-surgical outcome can be obtained in most patients with concordant MEG and MRI results even without extraoperative iVEEG monitoring, which indicates that the concordance among different modalities could indicate a likelihood of better postsurgical outcomes. However, extraoperative iVEEG monitoring remains prerequisite to the patients with discordant MEG and MRI findings. For nonlesional cases, our results showed that MEG could provide critical information in the placement of intracranial electrodes
Recommended from our members
Sustained delivery and molecular targeting of a therapeutic monoclonal antibody to metastases in the central nervous system of mice.
Approximately 15-40% of all cancers develop metastases in the central nervous system (CNS), yet few therapeutic options exist to treat them. Cancer therapies based on monoclonal antibodies are widely successful, yet have limited efficacy against CNS metastases, owing to the low levels of the drug reaching the tumour site. Here, we show that the encapsulation of rituximab within a crosslinked zwitterionic polymer layer leads to the sustained release of rituximab as the crosslinkers are gradually hydrolysed, enhancing the CNS levels of the antibody by approximately tenfold with respect to the administration of naked rituximab. When the nanocapsules were functionalized with CXCL13-the ligand for the chemokine receptor CXCR5, which is frequently found on B-cell lymphoma-a single dose led to improved control of CXCR5-expressing metastases in a murine xenograft model of non-Hodgkin lymphoma, and eliminated lymphoma in a xenografted humanized bone marrow-liver-thymus mouse model. Encapsulation and molecular targeting of therapeutic antibodies could become an option for the treatment of cancers with CNS metastases
A cyclic enzymatic amplification method for sensitive and selective detection of nucleic acids
Based on Exonuclease III (Exo III) and displacing probes, we have developed a Cyclic Enzymatic Amplification Method (CEAM) for sensitive and selective detection of nucleic acids. In this design, the displacing probe is non-fluorescent on its own and cannot be digested by Exo III until displacement hybridization by a target sequence, leading to release of free non-quenched fluorophore. Because a single target sequence can lead to the release and digestion of numerous fluorophore strands from the displacing probe, a remarkable signal amplification is achieved. With this method, DNA can be detected in the picomolar range with a high selectivity and within less than 20 min.NSFC [20805038]; MOE [200803841013]; National Basic Research Program of China [2007CB935603, 2010CB732402
Diagnostic value of radiomics in predicting Ki-67 and cytokeratin 19 expression in hepatocellular carcinoma: a systematic review and meta-analysis
BackgroundRadiomics have been increasingly used in the clinical management of hepatocellular carcinoma (HCC), such as markers prediction. Ki-67 and cytokeratin 19 (CK-19) are important prognostic markers of HCC. Radiomics has been introduced by many researchers in the prediction of these markers expression, but its diagnostic value remains controversial. Therefore, this review aims to assess the diagnostic value of radiomics in predicting Ki-67 and CK-19 expression in HCC.MethodsOriginal studies were systematically searched in PubMed, EMBASE, Cochrane Library, and Web of Science from inception to May 2023. All included studies were evaluated by the radiomics quality score. The C-index was used as the effect size of the performance of radiomics in predicting Ki-67and CK-19 expression, and the positive cutoff values of Ki-67 label index (LI) were determined by subgroup analysis and meta-regression.ResultsWe identified 34 eligible studies for Ki-67 (18 studies) and CK-19 (16 studies). The most common radiomics source was magnetic resonance imaging (MRI; 25/34). The pooled C-index of MRI-based models in predicting Ki-67 was 0.89 (95% CI:0.86–0.92) in the training set, and 0.87 (95% CI: 0.82–0.92) in the validation set. The pooled C-index of MRI-based models in predicting CK-19 was 0.86 (95% CI:0.81–0.90) in the training set, and 0.79 (95% CI: 0.73–0.84) in the validation set. Subgroup analysis suggested Ki-67 LI cutoff was a significant source of heterogeneity (I2 = 0.0% P>0.05), and meta-regression showed that the C-index increased as Ki-67 LI increased.ConclusionRadiomics shows promising diagnostic value in predicting positive Ki-67 or CK-19 expression. But lacks standardized guidelines, which makes the model and variables selection dependent on researcher experience, leading to study heterogeneity. Therefore, standardized guidelines are warranted for future research.Systematic Review Registrationhttps://www.crd.york.ac.uk/PROSPERO/, identifier CRD42023427953
- …