2,940 research outputs found

    Germany\u27s pivotal role in the construction of a common European house

    Full text link
    In the wake of the bipolar order, a political and strategic reconfiguration of Europe is necessary that reflects the current international atmosphere. Germany\u27s reunification has prompted a reappraisal of that country\u27s economic, political, and security role in Europe. Germany is a central element to any new European order due to its geography, economic and political clout, and its unique historical position between East and West; In light of recent changes, the relevance of neofunctional integration theory has been revived. The intergovernmental conferences at Maastricht on economic and political union demonstrate that functional and political spill-over are complemented by cultivated spill-over --the use of diplomacy to upgrade the common interest of integrating members. This refinement lends neofunctionalism a new relevancy in light of Europe\u27s emerging order; Germany has demonstrated a dramatic break with its militaristic past and demonstrated its commitment to the institutions of the West. The German polity has undergone a fundamental change and the country has become a stable liberal democracy. Its commitment to restructuring European economic, political, and security institutions to incorporate all European nations should mitigate the fears of Germany\u27s neighbors of a return to its hegemonic, militaristic past

    Effects of high energy photon emissions in laser generated ultra-relativistic plasmas: real-time synchrotron simulations

    Get PDF
    We model the emission of high energy photons due to relativistic charged particle motion in intense laser-plasma interactions. This is done within a particle-in-cell code, for which high frequency radiation normally cannot be resolved due to finite time steps and grid size. A simple expression for the synchrotron radiation spectra is used together with a Monte-Carlo method for the emittance. We extend previous work by allowing for arbitrary fields, considering the particles to be in instantaneous circular motion due to an effective magnetic field. Furthermore we implement noise reduction techniques and present validity estimates of the method. Finally, we perform a rigorous comparison to the mechanism of radiation reaction, and find the emitted energy to be in excellent agreement with the losses calculated using radiation reaction

    Broadband, unpolarized repumping and clearout light sources for Sr+^+ single-ion clocks

    Full text link
    Future transportable optical clocks require compact and reliable light sources. Here, broadband, unpolarized repumper and state clearout sources for Sr+ single-ion optical clocks are reported. These turn-key devices require no frequency stabilization nor external modulators. They are fiber based, inexpensive, and compact. Key characteristics for clock operation are presented, including optical spectra, induced light shifts and required extinction ratios. Tests with an operating single-ion standard show a clearout efficiency of 100%. Compared to a laser-based repumper, the achievable fluorescence rates for ion detection are a few tens of per cent lower. The resulting ion kinetic temperature is 1--1.5 mK, near the Doppler limit of the ion system. Similar repumper light sources could be made for Ca+ (866 nm) and Ba+ (650 nm) using semiconductor gain media.Comment: 4 pages, 6 figure

    The Effect of Columnar Disorder on the Superconducting Transition of a Type-II Superconductor in Zero Applied Magnetic Field

    Full text link
    We investigate the effect of random columnar disorder on the superconducting phase transition of a type-II superconductor in zero applied magnetic field using numerical simulations of three dimensional XY and vortex loop models. We consider both an unscreened model, in which the bare magnetic penetration length is approximated as infinite, and a strongly screened model, in which the magnetic penetration length is of order the vortex core radius. We consider both equilibrium and dynamic critical exponents. We show that, as in the disorder free case, the equilibrium transitions of the unscreened and strongly screened models lie in the same universality class, however scaling is now anisotropic. We find for the correlation length exponent ν=1.2±0.1\nu=1.2\pm 0.1, and for the anisotropy exponent ζ=1.3±0.1\zeta=1.3\pm 0.1. We find different dynamic critical exponents for the unscreened and strongly screened models.Comment: 30 pages 12 ps figure

    Force generation in small ensembles of Brownian motors

    Full text link
    The motility of certain gram-negative bacteria is mediated by retraction of type IV pili surface filaments, which are essential for infectivity. The retraction is powered by a strong molecular motor protein, PilT, producing very high forces that can exceed 150 pN. The molecular details of the motor mechanism are still largely unknown, while other features have been identified, such as the ring-shaped protein structure of the PilT motor. The surprisingly high forces generated by the PilT system motivate a model investigation of the generation of large forces in molecular motors. We propose a simple model, involving a small ensemble of motor subunits interacting through the deformations on a circular backbone with finite stiffness. The model describes the motor subunits in terms of diffusing particles in an asymmetric, time-dependent binding potential (flashing ratchet potential), roughly corresponding to the ATP hydrolysis cycle. We compute force-velocity relations in a subset of the parameter space and explore how the maximum force (stall force) is determined by stiffness, binding strength, ensemble size, and degree of asymmetry. We identify two qualitatively different regimes of operation depending on the relation between ensemble size and asymmetry. In the transition between these two regimes, the stall force depends nonlinearly on the number of motor subunits. Compared to its constituents without interactions, we find higher efficiency and qualitatively different force-velocity relations. The model captures several of the qualitative features obtained in experiments on pilus retraction forces, such as roughly constant velocity at low applied forces and insensitivity in the stall force to changes in the ATP concentration.Comment: RevTex 9 pages, 4 figures. Revised version, new subsections in Sec. III, removed typo

    Monte Carlo calculation of the current-voltage characteristics of a two dimensional lattice Coulomb gas

    Full text link
    We have studied the nonlinear current-voltage characteristic of a two dimensional lattice Coulomb gas by Monte Carlo simulation. We present three different determinations of the power-law exponent a(T)a(T) of the nonlinear current-voltage characteristic, VIa(T)+1V \sim I^{a(T)+1}. The determinations rely on both equilibrium and non-equilibrium simulations. We find good agreement between the different determinations, and our results also agree closely with experimental results for Hg-Xe thin film superconductors and for certain single crystal thin-film high temperature superconductors.Comment: late

    Resistance scaling at the Kosterlitz-Thouless transition

    Full text link
    We study the linear resistance at the Kosterlitz-Thouless transition by Monte Carlo simulation of vortex dynamics. Finite size scaling analysis of our data show excellent agreement with scaling properties of the Kosterlitz-Thouless transition. We also compare our results for the linear resistance with experiments. By adjusting the vortex chemical potential to an optimum value, the resistance at temperatures above the transition temperature agrees well with experiments over many decades.Comment: 7 pages, 4 postscript figures included, LATEX, KTH-CMT-94-00

    Current--Voltage Characteristics of Two--Dimensional Vortex Glass Models

    Full text link
    We have performed Monte Carlo simulations to determine current--voltage characteristics of two different vortex glass models in two dimensions. The results confirm the conclusions of earlier studies that there is a transition at T=0T=0. In addition we find that, as T0T\to 0, the linear resistance vanishes exponentially, and the current scale, JnlJ_{nl}, where non-linearities appear in the II--VV characteristics varies roughly as T3T^3, quite different from the predictions of conventional flux creep theory, JnlTJ_{nl} \sim T. The results for the two models agree quite well with each other, and also agree fairly well with recent experiments on very thin films of YBCO.Comment: 18 pages with 10 figures available upon request from R. A. Hyman at [email protected]. The only change in the new version is the deletion of an unimportant comment.IUCM94-01

    Particle cell calibration unit manual

    No full text

    Vortex glass transition in a random pinning model

    Full text link
    We study the vortex glass transition in disordered high temperature superconductors using Monte Carlo simulations. We use a random pinning model with strong point-correlated quenched disorder, a net applied magnetic field, longrange vortex interactions, and periodic boundary conditions. From a finite size scaling study of the helicity modulus, the RMS current, and the resistivity, we obtain critical exponents at the phase transition. The new exponents differ substantially from those of the gauge glass model, but are consistent with those of the pure three-dimensional XY model.Comment: 7 pages RevTeX, 4 eps figure
    corecore