17 research outputs found

    In vitro antiproliferative/cytotoxic activity on cancer cell lines of a cardanol and a cardol enriched from Thai Apis mellifera propolis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Propolis is a complex resinous honeybee product. It is reported to display diverse bioactivities, such as antimicrobial, anti-inflammatory and anti-tumor properties, which are mainly due to phenolic compounds, and especially flavonoids. The diversity of bioactive compounds depends on the geography and climate, since these factors affect the floral diversity. Here, <it>Apis mellifera </it>propolis from Nan province, Thailand, was evaluated for potential anti-cancer activity.</p> <p>Methods</p> <p>Propolis was sequentially extracted with methanol, dichloromethane and hexane and the cytotoxic activity of each crude extract was assayed for antiproliferative/cytotoxic activity <it>in vitro </it>against five human cell lines derived from duet carcinoma (BT474), undifferentiated lung (Chaco), liver hepatoblastoma (Hep-G<sub>2</sub>), gastric carcinoma (KATO-III) and colon adenocarcinoma (SW620) cancers. The human foreskin fibroblast cell line (Hs27) was used as a non-transformed control. Those crude extracts that displayed antiproliferative/cytotoxic activity were then further fractionated by column chromatography using TLC-pattern and MTT-cytotoxicity bioassay guided selection of the fractions. The chemical structure of each enriched bioactive compound was analyzed by nuclear magnetic resonance and mass spectroscopy.</p> <p>Results</p> <p>The crude hexane and dichloromethane extracts of propolis displayed antiproliferative/cytotoxic activities with IC<sub>50 </sub>values across the five cancer cell lines ranging from 41.3 to 52.4 μg/ml and from 43.8 to 53.5 μg/ml, respectively. Two main bioactive components were isolated, one cardanol and one cardol, with broadly similar <it>in vitro </it>antiproliferation/cytotoxicity IC<sub>50 </sub>values across the five cancer cell lines and the control Hs27 cell line, ranging from 10.8 to 29.3 μg/ml for the cardanol and < 3.13 to 5.97 μg/ml (6.82 - 13.0 μM) for the cardol. Moreover, both compounds induced cytotoxicity and cell death without DNA fragmentation in the cancer cells, but only an antiproliferation response in the control Hs27 cells However, these two compounds did not account for the net antiproliferation/cytotoxic activity of the crude extracts suggesting the existence of other potent compounds or synergistic interactions in the propolis extracts<sub>.</sub></p> <p>Conclusion</p> <p>This is the first report that Thai <it>A. mellifera </it>propolis contains at least two potentially new compounds (a cardanol and a cardol) with potential anti-cancer bioactivity. Both could be alternative antiproliferative agents for future development as anti-cancer drugs.</p

    Antimicrobial activity against oral pathogens and immunomodulatory effects and toxicity of geopropolis produced by the stingless bee Melipona fasciculata Smith

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Native bees of the tribe Meliponini produce a distinct kind of propolis called geopropolis. Although many pharmacological activities of propolis have already been demonstrated, little is known about geopropolis, particularly regarding its antimicrobial activity against oral pathogens. The present study aimed at investigating the antimicrobial activity of <it>M. fasciculata </it>geopropolis against oral pathogens, its effects on <it>S. mutans </it>biofilms, and the chemical contents of the extracts. A gel prepared with a geopropolis extract was also analyzed for its activity on <it>S. mutans </it>and its immunotoxicological potential.</p> <p>Methods</p> <p>Antimicrobial activities of three hydroalcoholic extracts (HAEs) of geopropolis, and hexane and chloroform fractions of one extract, were evaluated using the agar diffusion method and the broth dilution technique. Ethanol (70%, v/v) and chlorhexidine (0.12%, w/w) were used as negative and positive controls, respectively. Total phenol and flavonoid concentrations were assayed by spectrophotometry. Immunotoxicity was evaluated in mice by topical application in the oral cavity followed by quantification of biochemical and immunological parameters, and macro-microscopic analysis of animal organs.</p> <p>Results</p> <p>Two extracts, HAE-2 and HAE-3, showed inhibition zones ranging from 9 to 13 mm in diameter for <it>S. mutans </it>and <it>C. albicans</it>, but presented no activity against <it>L</it>. <it>acidophilus</it>. The MBCs for HAE-2 and HAE-3 against <it>S. mutans </it>were 6.25 mg/mL and 12.5 mg/mL, respectively. HAE-2 was fractionated, and its chloroform fraction had an MBC of 14.57 mg/mL. HAE-2 also exhibited bactericidal effects on <it>S. mutans </it>biofilms after 3 h of treatment. Significant differences (p < 0.05) in total phenol and flavonoid concentrations were observed among the samples. Signs toxic effects were not observed after application of the geopropolis-based gel, but an increase in the production of IL-4 and IL-10, anti-inflammatory cytokines, was detected.</p> <p>Conclusions</p> <p>In summary, geopropolis produced by <it>M. fasciculata </it>can exert antimicrobial action against <it>S. mutans </it>and <it>C. albicans</it>, with significant inhibitory activity against <it>S. mutans </it>biofilms. The extract with the highest flavonoid concentration, HAE-2, presented the highest antimicrobial activity. In addition, a geopropolis-based gel is not toxic in an animal model and displays anti-inflammatory effect.</p
    corecore