209 research outputs found

    The first determination of the actinide Th abundance for a red giant of the Ursa Minor dwarf galaxy

    Full text link
    The Thorium abundance for the red giant COS82 in the Ursa Minor dwarf spheroidal galaxy is determined based on a high resolution spectrum. This is the first detection of actinides in an extra Galactic object. A detailed abundance pattern is determined for 12 other neutron-capture elements from the atomic number 39 to 68. These elements are significantly over-abundant with respect to other metals like Fe (> 1 dex) and their abundance pattern agrees well with those of the r-process-enhanced, very metal-poor stars known in the Galactic halo, while the metallicity of this object ([Fe/H] ~ -1.5) is much higher than these field stars ([Fe/H] ~ -3.0). The results indicate that the mechanism and the astrophysical site that are responsible for neutron-capture elements in COS82 is similar to that for field r-process-enhanced stars, while the condition of low mass star formation is quite different. An estimate of the age of this object based on the Th abundance ratio is discussed.Comment: 5 pages, 2 figures, 1 table, to appear in PAS

    Extreme Enhancements of r-process Elements in the Cool Metal-Poor Main-Sequence Star SDSS J2357-0052

    Full text link
    We report the discovery of a cool metal-poor, main-sequence star exhibiting large excesses of r-process elements. This star is one of two newly discovered cool subdwarfs (effective temperatures of 5000 K) with extremely low metallicity ([Fe/H]<-3) identified from follow-up high-resolution spectroscopy of metal-poor candidates from the Sloan Digital Sky Survey. SDSS J2357-0052 has [Fe/H]=-3.4 and [Eu/Fe]=+1.9, and exhibits a scaled solar r-process abundance pattern of heavy neutron-capture elements. This is the first example of an extremely metal-poor, main-sequence star showing large excesses of r-process elements; all previous examples of the large r-process-enhancement phenomena have been associated with metal-poor giants. The metallicity of this object is the lowest, and the excess of Eu ([Eu/Fe]) is the highest, among the r-process-enhanced stars found so far. We consider possible scenarios to account for the detection of such a star, and discuss techniques to enable searches for similar stars in the future.Comment: 16 pages, 3 figures, 2 tables, ApJL in pres

    Interpretation of CEMP(s) and CEMP(s + r) Stars with AGB Models

    Full text link
    Asymptotic Giant Branch (AGB) stars play a fundamental role in the s-process nucleosynthesis during their thermal pulsing phase. The theoretical predictions obtained by AGB models at different masses, s-process efficiencies, dilution factors and initial r-enrichment, are compared with spectroscopic observations of Carbon-Enhanced Metal-Poor stars enriched in s-process elements, CEMP(s), collected from the literature. We discuss here five stars as example, CS 22880-074, CS 22942-019, CS 29526-110, HE 0202-2204, and LP 625-44. All these objects lie on the main-sequence or on the giant phase, clearly before the TP-AGB stage: the hypothesis of mass transfer from an AGB companion, would explain the observed s-process enhancement. CS 29526-110 and LP 625-44 are CEMP(s+r) objects, and are interpreted assuming that the molecular cloud, from which the binary system formed, was already enriched in r-process elements by SNII pollution. In several cases, the observed s-process distribution may be accounted for AGB models of different initial masses with proper 13C-pocket efficiency and dilution factor. Na (and Mg), produced via the neutron capture chain starting from 22Ne, may provide an indicator of the initial AGB mass.Comment: 8 pages, 6 figures, 2 table

    Chemical compositions of six metal-poor stars in the ultra-faint dwarf spheroidal galaxy Bo\"otes I

    Full text link
    Ultra-faint dwarf galaxies recently discovered around the Milky Way (MW) contain extremely metal-poor stars, and might represent the building blocks of low-metallicity components of the MW. Among them, the Bo\"otes I dwarf spheroidal galaxy is of particular interest because of its exclusively old stellar population. We determine chemical compositions of six red giant stars in Bo\"otes I, based on the high-resolution spectra obtained with the High Dispersion Spectrograph mounted on the Subaru Telescope. Abundances of 12 elements, including C, Na, alpha, Fe-peak, and neutron capture elements, were determined for the sample stars. The abundance results were compared to those in field MW halo stars previously obtained using an abundance analysis technique similar to the present study. We confirm the low metallicity of Boo-094 ([Fe/H]=-3.4). Except for this star, the abundance ratios ([X/Fe]) of elements lighter than zinc are generally homogeneous with small scatter around the mean values in the metallicities spanned by the other five stars (-2.7-2.7 show no significant enhancement of carbon. The [Mg/Fe] and [Ca/Fe] ratios are almost constant with a modest decreasing trend with increasing [Fe/H] and are slightly lower than the field halo stars. The [Sr/Fe] and [Sr/Ba] ratios also tend to be lower in the Bo\"otes I stars than in the halo stars. Our results of small scatter in the [X/Fe] ratios for elements lighter than zinc suggest that these abundances were homogeneous among the ejecta of prior generation(s) of stars in this galaxy.Comment: 16 pages, 12 figures. Accepted to A&A, language correcte
    • …
    corecore