5 research outputs found

    Complete genome sequence of Brucella abortus isolated from a human blood culture sample in Tanzania

    Get PDF
    This research articles was published in the microbiology resource announcementsBrucella abortus causes infections in humans and livestock. Bacterial isolates are challenging to obtain, and very little is known about the genomic epidemiology of this species in Africa. Here, we report the complete genome sequence of a Brucella abortus isolate cultured from a febrile human in northern Tanzani

    Molecular Characterization of Staphylococcus aureus Isolated from Raw Milk and Humans in Eastern Tanzania: Genetic Diversity and Inter-Host Transmission

    No full text
    Staphylococcus aureus is a common cause of infection in humans and animals, including bovine mastitis, globally. The objective of this study was to genetically characterize a collection of S. aureus isolates recovered from milk and nasal swabs from humans with and without animal contact (bovine = 43, human = 12). Using whole genome sequencing (NextSeq550), isolates were sequence typed, screened for antimicrobial resistance and virulence genes and examined for possible inter-species host transmission. Multi locus sequence typing (MLST) and single nucleotide polymorphism (SNP)-based phylogeny revealed 14 different sequence types, including the following six novel sequence types: ST7840, 7841, 7845, 7846, 7847, and 7848. The SNP tree confirmed that MLST clustering occurred most commonly within CC97, CC5477, and CC152. ResFinder analysis revealed five common antibiotic resistance genes, namely tet(K), blaZ, dfrG, erm©, and str, encoding for different antibiotics. mecA was discovered in one human isolate only. Multidrug resistance was observed in 25% of the isolates, predominantly in CC152 (7/8) and CC121 (3/4). Known bovine S. aureus (CC97) were collected in humans and known human S. aureus lineages (CC152) were collected in cattle; additionally, when these were compared to bovine-isolated CC97 and human-isolated CC152, respectively, no genetic distinction could be observed. This is suggestive of inter-host transmission and supports the need for surveillance of the human-animal interface

    Short reads-based characterization of pathotype diversity and drug resistance among Escherichia coli isolated from patients attending regional referral hospitals in Tanzania

    No full text
    Abstract Background Escherichia coli is known to cause about 2 million deaths annually of which diarrhea infection is leading and typically occurs in children under 5 years old. Although Africa is the most affected region there is little information on their pathotypes diversity and their antimicrobial resistance. Objective To determine the pathotype diversity and antimicrobial resistance among E. coli from patients attending regional referral hospitals in Tanzania. Materials and methods A retrospective cross-section laboratory-based study where a total of 138 archived E. coli isolates collected from 2020 to 2021 from selected regional referral hospitals in Tanzania were sequenced using the Illumina Nextseq550 sequencer platform. Analysis of the sequences was done in the CGE tool for the identification of resistance genes and virulence genes. SPSS version 20 was used to summarize data using frequency and proportion. Results Among all 138 sequenced E. coli isolates, the most prevalent observed pathotype virulence genes were of extraintestinal E. coli UPEC fyuA gene 82.6% (114/138) and NMEC irp gene 81.9% (113/138). Most of the E. coli pathotypes observed exist as a hybrid due to gene overlapping, the most prevalent pathotypes observed were NMEC/UPEC hybrid 29.7% (41/138), NMEC/UPEC/EAEC hybrid 26.1% (36/138), NMEC/UPEC/DAEC hybrid 18.1% (25/138) and EAEC 15.2% (21/138). Overall most E. coli carried resistance gene to ampicillin 90.6% (125/138), trimethoprim 85.5% (118/138), tetracycline 79.9% (110/138), ciprofloxacin 76.1% (105/138) and 72.5% (100/138) Nalidixic acid. Hybrid pathotypes were more resistant than non-hybrid pathotypes. Conclusion Whole genome sequencing reveals the presence of hybrid pathotypes with increased drug resistance among E. coli isolated from regional referral hospitals in Tanzania

    Nanopore sequencing technology for clinical diagnosis of infectious diseases where laboratory capacity is meager: A case report

    No full text
    In resource-limited settings, patients are often first presented to clinical settings when seriously ill and access to proper clinical microbial diagnostics is often very limited or non-existing. On February 16th, 2022 we were on a field trip to test a completely field-deployable metagenomics sequencing set-up, that includes DNA purification, sequencing, and bioinformatics analyses using bioinformatics tools installed on a laptop for water samples, just outside Moshi, Tanzania. On our way to the test site, we were contacted by the nearby Machame hospital regarding a child seriously ill with diarrhea and not responding to treatment. Within the same day, we conducted an onsite metagenomics examination of a fecal sample from the child, and Campylobacter jejuni was identified as the causative agent. The treatment was subsequently changed, with almost immediate improvement, and the child was discharged on February 21st
    corecore