36 research outputs found

    Therapeutic Rescue of Misfolded Mutants: Validation of Primary High Throughput Screens for Identification of Pharmacoperone Drugs

    Get PDF
    Functional rescue of misfolded mutant receptors by small non-peptide molecules has been demonstrated. These small, target-specific molecules (pharmacological chaperones or "pharmacoperones") serve as molecular templates, promote correct folding and allow otherwise misfolded mutants to pass the scrutiny of the cellular quality control system (QCS) and be expressed at the plasma membrane (PM) where they function similarly to wild type (WT) proteins. In the case of the gonadotropin releasing hormone receptor (GnRHR), drugs that rescue one mutant typically rescue many mutants, even if the mutations are located at distant sites (extracellular loops, intracellular loops, transmembrane helices). This increases the value of these drugs. These drugs are typically identified, post hoc, from "hits" in screens designed to detect antagonists or agonists. The therapeutic utility of pharmacoperones has been limited due to the absence of screens that enable identification of pharmacoperones per se.We describe a generalizable primary screening approach for pharmacoperone drugs based on measurement of gain of activity in stable HeLa cells stably expressing the mutants of two different model G-protein coupled receptors (GPCRs) (hGnRHR[E(90)K] or hV2R[L(83)Q]). These cells turn off expression of the receptor mutant gene of interest in the presence of tetracycline and its analogs, which provides a convenient means to identify false positives.The methods described and characterized here provide the basis of novel primary screens for pharmacoperones that detect drugs that rescue GPCR mutants of specific receptors. This approach will identify structures that would have been missed in screens that were designed to select only agonists or antagonists. Non-antagonistic pharmacoperones have a therapeutic advantage since they will not compete for endogenous agonists and may not have to be washed out once rescue has occurred and before activation by endogenous or exogenous agonists

    Cigarette Smoke Upregulates Rat Coronary Artery Endothelin Receptors In Vivo

    Get PDF
    Background: Cigarette smoking is a strong cardiovascular risk factor and endothelin (ET) receptors are related to coronary artery diseases. The present study established an in vivo secondhand smoke (SHS) exposure model and investigated the hypothesis that cigarette smoke induces ET receptor upregulation in rat coronary arteries and its possible underlying mechanisms. Methodology/Principal Findings: Rats were exposed to SHS for 200 min daily for 8 weeks. The coronary arteries were isolated and examined. The vasoconstriction was studied by a sensitive myograph. The expression of mRNA and protein for receptors was examined by real-time PCR, Western blot and immunofluorescence. Compared to fresh air exposure, SHS increased contractile responses mediated by endothelin type A (ETA) and type B (ETB) receptors in coronary arteries. In parallel, the expression of mRNA and protein for ETA and ETB receptors of smoke exposed rats were higher than that of animals exposed to fresh air, suggesting that SHS upregulates ET A and ET B receptors in coronary arteries in vivo. Immunofluorescence staining showed that the enhanced receptor expression was localized to the smooth muscle cells of coronary arteries. The protein levels of phosphorylated (p)-Raf-1 and p-ERK1/2 in smoke exposed rats were significantly higher than in control rats, demonstrating that SHS induces the activation of the Raf/ERK/MAPK pathway. Treatment with Raf-1 inhibitor GW5074 suppressed SHS-induced enhanced contraction mediated by ET A receptors, and inhibited th
    corecore