164 research outputs found

    The Pervasiveness of Telemedicine: Adoption With or Without a Research Base

    Full text link

    Quantitative evaluation of recall and precision of CAT Crawler, a search engine specialized on retrieval of Critically Appraised Topics

    Get PDF
    BACKGROUND: Critically Appraised Topics (CATs) are a useful tool that helps physicians to make clinical decisions as the healthcare moves towards the practice of Evidence-Based Medicine (EBM). The fast growing World Wide Web has provided a place for physicians to share their appraised topics online, but an increasing amount of time is needed to find a particular topic within such a rich repository. METHODS: A web-based application, namely the CAT Crawler, was developed by Singapore's Bioinformatics Institute to allow physicians to adequately access available appraised topics on the Internet. A meta-search engine, as the core component of the application, finds relevant topics following keyword input. The primary objective of the work presented here is to evaluate the quantity and quality of search results obtained from the meta-search engine of the CAT Crawler by comparing them with those obtained from two individual CAT search engines. From the CAT libraries at these two sites, all possible keywords were extracted using a keyword extractor. Of those common to both libraries, ten were randomly chosen for evaluation. All ten were submitted to the two search engines individually, and through the meta-search engine of the CAT Crawler. Search results were evaluated for relevance both by medical amateurs and professionals, and the respective recall and precision were calculated. RESULTS: While achieving an identical recall, the meta-search engine showed a precision of 77.26% (Âą14.45) compared to the individual search engines' 52.65% (Âą12.0) (p < 0.001). CONCLUSION: The results demonstrate the validity of the CAT Crawler meta-search engine approach. The improved precision due to inherent filters underlines the practical usefulness of this tool for clinicians

    Using co-occurrence network structure to extract synonymous gene and protein names from MEDLINE abstracts

    Get PDF
    BACKGROUND: Text-mining can assist biomedical researchers in reducing information overload by extracting useful knowledge from large collections of text. We developed a novel text-mining method based on analyzing the network structure created by symbol co-occurrences as a way to extend the capabilities of knowledge extraction. The method was applied to the task of automatic gene and protein name synonym extraction. RESULTS: Performance was measured on a test set consisting of about 50,000 abstracts from one year of MEDLINE. Synonyms retrieved from curated genomics databases were used as a gold standard. The system obtained a maximum F-score of 22.21% (23.18% precision and 21.36% recall), with high efficiency in the use of seed pairs. CONCLUSION: The method performs comparably with other studied methods, does not rely on sophisticated named-entity recognition, and requires little initial seed knowledge

    Personalized online information search and visualization

    Get PDF
    BACKGROUND: The rapid growth of online publications such as the Medline and other sources raises the questions how to get the relevant information efficiently. It is important, for a bench scientist, e.g., to monitor related publications constantly. It is also important, for a clinician, e.g., to access the patient records anywhere and anytime. Although time-consuming, this kind of searching procedure is usually similar and simple. Likely, it involves a search engine and a visualization interface. Different words or combination reflects different research topics. The objective of this study is to automate this tedious procedure by recording those words/terms in a database and online sources, and use the information for an automated search and retrieval. The retrieved information will be available anytime and anywhere through a secure web server. RESULTS: We developed such a database that stored searching terms, journals and et al., and implement a piece of software for searching the medical subject heading-indexed sources such as the Medline and other online sources automatically. The returned information were stored locally, as is, on a server and visible through a Web-based interface. The search was performed daily or otherwise scheduled and the users logon to the website anytime without typing any words. The system has potentials to retrieve similarly from non-medical subject heading-indexed literature or a privileged information source such as a clinical information system. The issues such as security, presentation and visualization of the retrieved information were thus addressed. One of the presentation issues such as wireless access was also experimented. A user survey showed that the personalized online searches saved time and increased and relevancy. Handheld devices could also be used to access the stored information but less satisfactory. CONCLUSION: The Web-searching software or similar system has potential to be an efficient tool for both bench scientists and clinicians for their daily information needs

    The MERG Suite: Tools for discovering competencies and associated learning resources

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens

    Question Answering on Scholarly Knowledge Graphs

    Get PDF
    Answering questions on scholarly knowledge comprising text and other artifacts is a vital part of any research life cycle. Querying scholarly knowledge and retrieving suitable answers is currently hardly possible due to the following primary reason: machine inactionable, ambiguous and unstructured content in publications. We present JarvisQA, a BERT based system to answer questions on tabular views of scholarly knowledge graphs. Such tables can be found in a variety of shapes in the scholarly literature (e.g., surveys, comparisons or results). Our system can retrieve direct answers to a variety of different questions asked on tabular data in articles. Furthermore, we present a preliminary dataset of related tables and a corresponding set of natural language questions. This dataset is used as a benchmark for our system and can be reused by others. Additionally, JarvisQA is evaluated on two datasets against other baselines and shows an improvement of two to three folds in performance compared to related methods.Comment: Pre-print for TPDL2020 accepted full paper, 14 page

    Evaluating the impact of MEDLINE filters on evidence retrieval: study protocol

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rather than searching the entire MEDLINE database, clinicians can perform searches on a filtered set of articles where relevant information is more likely to be found. Members of our team previously developed two types of MEDLINE filters. The 'methods' filters help identify clinical research of high methodological merit. The 'content' filters help identify articles in the discipline of renal medicine. We will now test the utility of these filters for physician MEDLINE searching.</p> <p>Hypothesis</p> <p>When a physician searches MEDLINE, we hypothesize the use of filters will increase the number of relevant articles retrieved (increase 'recall,' also called sensitivity) and decrease the number of non-relevant articles retrieved (increase 'precision,' also called positive predictive value), compared to the performance of a physician's search unaided by filters.</p> <p>Methods</p> <p>We will survey a random sample of 100 nephrologists in Canada to obtain the MEDLINE search that they would first perform themselves for a focused clinical question. Each question we provide to a nephrologist will be based on the topic of a recently published, well-conducted systematic review. We will examine the performance of a physician's unaided MEDLINE search. We will then apply a total of eight filter combinations to the search (filters used in isolation or in combination). We will calculate the recall and precision of each search. The filter combinations that most improve on unaided physician searches will be identified and characterized.</p> <p>Discussion</p> <p>If these filters improve search performance, physicians will be able to search MEDLINE for renal evidence more effectively, in less time, and with less frustration. Additionally, our methodology can be used as a proof of concept for the evaluation of search filters in other disciplines.</p

    Clinical outcomes resulting from telemedicine interventions: a systematic review

    Get PDF
    BACKGROUND: The use of telemedicine is growing, but its efficacy for achieving comparable or improved clinical outcomes has not been established in many medical specialties. The objective of this systematic review was to evaluate the efficacy of telemedicine interventions for health outcomes in two classes of application: home-based and office/hospital-based. METHODS: Data sources for the study included deports of studies from the MEDLINE, EMBASE, CINAHL, and HealthSTAR databases; searching of bibliographies of review and other articles; and consultation of printed resources as well as investigators in the field. We included studies that were relevant to at least one of the two classes of telemedicine and addressed the assessment of efficacy for clinical outcomes with data of reported results. We excluded studies where the service did not historically require face-to-face encounters (e.g., radiology or pathology diagnosis). All included articles were abstracted and graded for quality and direction of the evidence. RESULTS: A total of 25 articles met inclusion criteria and were assessed. The strongest evidence for the efficacy of telemedicine in clinical outcomes comes from home-based telemedicine in the areas of chronic disease management, hypertension, and AIDS. The value of home glucose monitoring in diabetes mellitus is conflicting. There is also reasonable evidence that telemedicine is comparable to face-to-face care in emergency medicine and is beneficial in surgical and neonatal intensive care units as well as patient transfer in neurosurgery. CONCLUSIONS: Despite the widespread use of telemedicine in virtually all major areas of health care, evidence concerning the benefits of its use exists in only a small number of them. Further randomized controlled trials must be done to determine where its use is most effective

    Can electronic search engines optimize screening of search results in systematic reviews: an empirical study

    Get PDF
    BACKGROUND: Most electronic search efforts directed at identifying primary studies for inclusion in systematic reviews rely on the optimal Boolean search features of search interfaces such as DIALOG(® )and Ovid™. Our objective is to test the ability of an Ultraseek(® )search engine to rank MEDLINE(® )records of the included studies of Cochrane reviews within the top half of all the records retrieved by the Boolean MEDLINE search used by the reviewers. METHODS: Collections were created using the MEDLINE bibliographic records of included and excluded studies listed in the review and all records retrieved by the MEDLINE search. Records were converted to individual HTML files. Collections of records were indexed and searched through a statistical search engine, Ultraseek, using review-specific search terms. Our data sources, systematic reviews published in the Cochrane library, were included if they reported using at least one phase of the Cochrane Highly Sensitive Search Strategy (HSSS), provided citations for both included and excluded studies and conducted a meta-analysis using a binary outcome measure. Reviews were selected if they yielded between 1000–6000 records when the MEDLINE search strategy was replicated. RESULTS: Nine Cochrane reviews were included. Included studies within the Cochrane reviews were found within the first 500 retrieved studies more often than would be expected by chance. Across all reviews, recall of included studies into the top 500 was 0.70. There was no statistically significant difference in ranking when comparing included studies with just the subset of excluded studies listed as excluded in the published review. CONCLUSION: The relevance ranking provided by the search engine was better than expected by chance and shows promise for the preliminary evaluation of large results from Boolean searches. A statistical search engine does not appear to be able to make fine discriminations concerning the relevance of bibliographic records that have been pre-screened by systematic reviewers
    • …
    corecore