16 research outputs found

    Determination of liposome/water partition coefficients of organic acids and bases by solid-phase microextraction

    Get PDF
    The extraction of two methylated anilines and three chlorinated phenols by solid-phase microextraction (SPME) fibers coated with polyacrylate was investigated as a function of pH. Only the neutral species of the acids and bases partitioned into the polymer. Extraction kinetics were accelerated for the hydrophobic phenols at pH values around their acidity constant. This is presumably due to a reconstitution of the neutral species in the unstirred aqueous layer adjacent to the polymer surface by the charged species through the fast acid-base equilibrium. Although the charged species is not taken up into the polymer. liposome/water distribution ratios could be measured up to a pH value, where 99% of the compounds were present as charged species. The partition coefficients of the neutral and charged species were extrapolated from the pH profiles of the liposome/water distribution ratios. The resulting values were slightly lower than those measured with equilibrium dialysis. The discrepancies are discussed with respect to differences in the experimental conditions and the possibility of matrix effects during SPME measurements

    Determination of total and available fractions of PAHs by SPME in oily wastewaters : overcoming interference from NAPL and NOM

    Get PDF
    Background, aim, and scope Polycyclic aromatic hydrocarbons (PAHs) are often found in oily wastewaters. Their presence is usually the result of human activities and has a negative effect on the environment. One important step in addressing this problem is to evaluate the effectiveness of PAH removal by biological processes since these are the most cost-effective treatments known today. Many techniques are presently available for PAH determination in wastewaters. Solid phase microextracion (SPME) is known to be one of the most effective techniques for this purpose. When analyzing complex matrices with substances such as natural organic matter (NOM) and non-aqueous phase liquids (NAPL), it is important to differentiate the free dissolved PAH from matrix-bonded PAH. PAHs associated with the bonded fraction are less susceptible to biological treatment. The present study concerns the development of a simple and suitable methodology for the determination of the freely dissolved and the total fraction of PAHs present in oily wastewaters. The methodology was then applied to an oily wastewater from a fuel station retention basin. Material and methods Headspace SPME was used for analyzing PAH since the presence of a complex or dirty matrix in direct contact with the fiber may damage it. Four model PAHs—anthracene, fluorene, phenanthrene, and pyrene—were analyzed by GC-MS. Negligible depletion SPME technique was used to determine the free fraction. Total PAH was determined by enhancing the mass transfer from the bonded phase to the freely dissolved phase by temperature optimization and the use of the method of standard additions. The PAH absorption kinetics were determined in order to define the optimal sampling conditions for this method. The fitting of the experimental data to a mathematical model was accomplished using Berkeley Madonna software. Humic acid and silicon oil were used as model NOM and NAPL, respectively, to study the effect of these compounds on the decrease of SPME response. Then, the method was evaluated with wastewater from a fuel station spill retention basin. Results The SPME kinetic parameters—k 1 (uptake rate), k 2 (desorption rate), and K SPME (partition coefficient)—were determined from experimental data modeling. The determination of the free fraction required 15-min sampling to ensure that PAH depletion from sample was below 1%. For total PAH, a 30-min extraction at 100°C ensured the maximum signal response in the GC-MS. For the determination of free and total PAHs, extractions were performed before reaching the SPME equilibrium. The wastewater used in this study had no free fraction of the analyzed PAHs. However, the four studied PAHs were found when the method for total PAH was used. Discussion The addition of NOM and NAPL dramatically decreased the efficiency of the SPME. This decrease was the result of a greater partition of the PAHs to the NAPL and NOM phases. This fact was also observed in the analysis of the fuel station spill retention basin, where no free PAH was measured. However, using the method of standard addition for the determination of total PAH, it was possible to quantify all four PAHs. Conclusions The method developed in the present study was found to be adequate to differentiate between free and total PAH present in oily wastewater. It was determined that the presence of NOM and NAPL had a negative effect on SPME efficiency. Recommendations and perspectives The presence of binding substances had a great influence on SPME kinetics. Therefore, it is of extreme importance to determine their degree of interference when analyzing oily wastewaters or results can otherwise be erroneous. Other factors influencing the total PAH determinations should be considered in further studies.Fundação para a Ciência e a Tecnologia (FCT) - SFRH/BD/ 18816/2004, POCI/AMB/61044/200
    corecore