39 research outputs found
COLUMN LIQUID-CHROMATOGRAPHY OF INTEGRAL MEMBRANE-PROTEINS
Biological membranes have as a major function the compartmentation of biological processes in cells and organelles. They consist of a bilayer of phospholipid molecules in which proteins are embedded. These integral membrane proteins, which cross the bilayer once or several times, generally have a higher than average hydrophobicity and tend to aggregate. Detergents are needed to remove integral membrane proteins from the lipid bilayer and they have to be present during further chromatographic purification. Predominantly, four modes of HPLC have been used alone or in combination for the puridication of integral membrane proteins. These are based on differences of proteins in size (size-exclusion chromatography, SEC), electrostatic interaction (ion-exchange chromatography, IEC), bioaffinity (bioaffinity chromatography, BAC) and hydrophobic interaction (reversed-phase chromatography, RPC, and hydrophobic-interaction chromatography, HIC). SEC, IEC, BAC and HIC are used under relatively mild conditions, and buffer systems generally contain a non-ionic detergent. RPC generally has a denaturing effect on the protein and should preferably be used for the purification of integral membrane proteins smaller than 50 kD
PURIFICATION OF THE INTEGRAL MEMBRANE-GLYCOPROTEINS-D OF HERPES-SIMPLEX VIRUS TYPE-1 AND TYPE-2, PRODUCED IN THE RECOMBINANT BACULOVIRUS EXPRESSION SYSTEM, BY ION-EXCHANGE HIGH-PERFORMANCE LIQUID-CHROMATOGRAPHY
Selective elution of Sendai virus integral membrane proteins by ion-exchange high-performance liquid chromatography (HPIEC) using different detergent concentrations was reported before [S. Welling-Wester, M. Feijlbrief, D.G.A.M. Koedijk, M.A. Braaksma, B.R.K. Douma and G.W. Welling, J. Chromatogr., 646 (1993) 37]. In the present study this novel approach was applied to the purification of the integral membrane glycoprotein D of Herpes simplex virus types 1 and 2. The glycoproteins D of types 1 (gD-1) and 2 (gD-2) were cloned into the baculovirus expression system and produced in protein-free cultured insect cells.Detergent extracts of recombinant baculovirus-infected insect cells containing gD-1 or gD-2 were prepared using pentaethyleneglycol monodecyl ether, for extraction (final concentration 2%, w/v). The same detergent was used as additive in the elution buffers for HPIEC on a Mono Q HR 5/5 column. At low (0.005%) detergent concentration, most of the proteins present in the extract including part of gD were eluted with the sodium chloride gradient whereas a subsequent blank run using the same gradient at higher detergent concentration (0.1%) resulted in selective elution of pure gD.</p