32 research outputs found

    Regional changes in reactive hyperemic blood flow during exercise training: time-course adaptations

    Get PDF
    BACKGROUND: Few studies have examined the time-course of localized exercise training on regional blood flow in humans. The study examined the influence of handgrip exercise training on forearm reactive hyperemic blood flow and vascular resistance in apparently healthy men. METHODS: Forearm blood flow and vascular resistance were evaluated, in 17 individuals [Age: 22.6 ± 3.5], in both arms, at rest and following 5 minutes of arterial occlusion, using strain gauge plethysmography, prior to training (V1) and every week thereafter (V2-5) for 4 weeks. Handgrip exercise was performed in the non-dominant arm 5 d/wk for 20 minutes at 60% of maximum voluntary contraction, while the dominant arm served as control. RESULTS: Resting HR, BP, and forearm blood flow and vascular resistance were not altered with training. The trained arm handgrip strength and circumference increased by 14.5% (p = 0.014) and 1.56% (p = 0.03), respectively. ANOVA tests revealed an arms by visit interaction for the trained arm for reactive hyperemic blood flow (p = 0.02) and vascular resistance (p = 0.009). Post-hoc comparison demonstrated increased reactive hyperemic blood flow (p = 0.0013), and decreased post-occlusion vascular resistance (p = 0.05), following the 1(st )week of training, with no significant changes in subsequent visits. CONCLUSION: The results indicate unilateral improvements in forearm reactive hyperemic blood flow and vascular resistance following 1 week of handgrip exercise training and leveled off for the rest of the study

    Connection between Telomerase Activity in PBMC and Markers of Inflammation and Endothelial Dysfunction in Patients with Metabolic Syndrome

    Get PDF
    Metabolic syndrome (MS) is a constellation of metabolic derangements associated with vascular endothelial dysfunction and oxidative stress and is widely regarded as an inflammatory condition, accompanied by an increased risk for cardiovascular disease. The present study tried to investigate the implications of telomerase activity with inflammation and impaired endothelial function in patients with metabolic syndrome. Telomerase activity in circulating peripheral blood mononuclear cells (PBMC), TNF-α, IL-6 and ADMA were monitored in 39 patients with MS and 20 age and sex-matched healthy volunteers. Telomerase activity in PBMC, TNF-α, IL-6 and ADMA were all significantly elevated in patients with MS compared to healthy volunteers. PBMC telomerase was negatively correlated with HDL and positively correlated with ADMA, while no association between TNF-α and IL-6 was observed. IL-6 was increasing with increasing systolic pressure both in the patients with MS and in the healthy volunteers, while smoking and diabetes were positively correlated with IL-6 only in the patients' group. In conclusion, in patients with MS characterised by a strong dyslipidemic profile and low diabetes prevalence, significant telomerase activity was detected in circulating PBMC, along with elevated markers of inflammation and endothelial dysfunction. These findings suggest a prolonged activity of inflammatory cells in the studied state of this metabolic disorder that could represent a contributory pathway in the pathogenesis of atherosclerosis

    Incidental sounds of locomotion in animal cognition

    Get PDF
    The highly synchronized formations that characterize schooling in fish and the flight of certain bird groups have frequently been explained as reducing energy expenditure. I present an alternative, or complimentary, hypothesis that synchronization of group movements may improve hearing perception. Although incidental sounds produced as a by-product of locomotion (ISOL) will be an almost constant presence to most animals, the impact on perception and cognition has been little discussed. A consequence of ISOL may be masking of critical sound signals in the surroundings. Birds in flight may generate significant noise; some produce wing beats that are readily heard on the ground at some distance from the source. Synchronization of group movements might reduce auditory masking through periods of relative silence and facilitate auditory grouping processes. Respiratory locomotor coupling and intermittent flight may be other means of reducing masking and improving hearing perception. A distinct border between ISOL and communicative signals is difficult to delineate. ISOL seems to be used by schooling fish as an aid to staying in formation and avoiding collisions. Bird and bat flocks may use ISOL in an analogous way. ISOL and interaction with animal perception, cognition, and synchronized behavior provide an interesting area for future study

    Microcirculation in obesity: an unexplored domain

    Full text link
    corecore