1,107 research outputs found

    Higgsphobic and fermiophobic Z' as a single dark matter candidate

    Get PDF
    A spin-1 Z' particle as a single dark matter candidate is investigated by assuming that it does not directly couple to the Higgs boson and standard model fermions and does not mix with the photon and Z boson. The remaining dominant vertices are quartic Z'Z'ZZ and Z'Z'W+W-, which can induce effective Z'Z'q\bar{q} couplings through standard-model gauge-boson loops. We discuss constraints from the cosmological thermal relic density, and direct and indirect-detection experiments, and find that a dark Z' can only exist above the W boson mass threshold, and the effective quartic coupling of Z'Z'VV is bounded in the region of 10^{-3}~10^{-2}.Comment: 18pages, 14 figure

    Lecture Notes on Generalized Symmetries and Applications

    Full text link
    In this lecture note, we give a basic introduction to the rapidly developing concepts of generalized symmetries, from the perspectives of both high energy physics and condensed matter physics. In particular, we emphasize on the (invertible) higher-form and higher-group symmetries. For the physical applications, we discuss the geometric engineering of QFTs in string theory and the symmetry-protected topological (SPT) phases in condensed matter physics. The lecture note is based on a short course on generalized symmetries, jointly given by Yi-Nan Wang and Qing-Rui Wang in Feb. 2023, which took place at School of Physics, Peking University (https://indico.ihep.ac.cn/event/18796/).Comment: 70 pages, Invited contribution for the Special Issue "Symmetry and Chaos in Quantum Mechanics" for Symmetry (Ed. Dr. Cheng Peng

    Exothermic isospin-violating dark matter after SuperCDMS and CDEX

    Get PDF
    We show that exothermic isospin-violating dark matter (IVDM) can make the results of the latest CDMS-Si experiment consistent with recent null experiments, such as XENON10, XENON100, LUX, CDEX, and SuperCDMS, whereas for the CoGeNT experiment, a strong tension still persists. For CDMS-Si, separate exothermic dark matter or isospin-violating dark matter cannot fully ameliorate the tensions among these experiments; the tension disappears only if exothermic scattering is combined with an isospin-violating effect of f_n/f_p=-0.7. For such exothermic IVDM to exist, at least a new vector gauge boson (dark photon or dark Z') that connects SM quarks to Majorana-type DM particles is required.Comment: 12 pages, 6 figure

    Origin of Interfacial Polar Order in Incipient Ferroelectrics

    Get PDF
    There are ample experimental evidences indicating that the ferroelastic domain walls of incipient ferroelectrics, such as SrTiO3 and CaTiO3, are polar. The emergence of such interfacial polar order at a domain wall is exciting and believed to arise from the coupling between a primary order parameter, such as a strain or an antiferrodistortive (AFD) order parameter, and polarization. There have been several mechanisms proposed to explain the emergence of interfacial polar order, including biquadratic coupling, AFD-antiferroelectric coupling, and flexoelectric coupling. Using CaTiO3 as an example, we demonstrate, using both asymptotic analytics and numerical calculation, that the flexoelectric coupling is likely the dominant mechanism leading to the interfacial polar order

    Noise suppression of on-chip mechanical resonators by chaotic coherent feedback

    Full text link
    We propose a method to decouple the nanomechanical resonator in optomechanical systems from the environmental noise by introducing a chaotic coherent feedback loop. We find that the chaotic controller in the feedback loop can modulate the dynamics of the controlled optomechanical system and induce a broadband response of the mechanical mode. This broadband response of the mechanical mode will cut off the coupling between the mechanical mode and the environment and thus suppress the environmental noise of the mechanical modes. As an application, we use the protected optomechanical system to act as a quantum memory. It's shown that the noise-decoupled optomechanical quantum memory is efficient for storing information transferred from coherent or squeezed light

    Possible Way to Synthesize Superheavy Element Z=117

    Full text link
    Within the framework of the dinuclear system model, the production of superheavy element Z=117 in possible projectile-target combinations is analyzed systematically. The calculated results show that the production cross sections are strongly dependent on the reaction systems. Optimal combinations, corresponding excitation energies and evaporation channels are proposed in this letter, such as the isotopes ^{248,249}Bk in ^{48}Ca induced reactions in 3n evaporation channels and the reactions ^{45}Sc+^{246,248}Cm in 3n and 4n channels, and the system ^{51}V+^{244}Pu in 3n channel.Comment: 10 pages, 4 figures, 1 tabl

    Comparative study on saponin fractions from Panax notoginseng inhibiting inflammation-induced endothelial adhesion molecule expression and monocyte adhesion

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Panax notoginseng </it>is commonly used for the treatment of cardiovascular diseases in China. The present study investigates the effects of three different saponin fractions (<it>ie </it>total saponins, PNS; protopanaxadiol-type saponin, PDS; and protopanaxatriol-type saponin, PTS) and two major individual ingredients (<it>ie </it>ginsenoside Rg<sub>1 </sub>and Rb<sub>1</sub>) from <it>P. notoginseng </it>on the endothelial inflammatory response <it>in vitro </it>and <it>in vivo</it>.</p> <p>Methods</p> <p>Recombinant human tumor necrosis factor-α (TNF-α) was added to the culture medium of human coronary artery endothelial cells (HCAECs) to induce an inflammatory response. A cell adhesion assay was used to determine the effect of the <it>P. notoginseng </it>saponin fractions on endothelial-monocyte interaction. The cell adhesion molecule (CAMs) expression, including ICAM-1 and VCAM-1, in the protein level on the surface of endothelial cells were measured by cellular ELISA. CAMs expression in mRNA level was also assayed by qRT-PCR in the HCAECs and the aorta of rat fed with high cholesterol diet (HCD). Western blotting was used to detect effect of the saponin fractions on CAMs protein expression in HCAECs. In addition, nuclear translocation of p65, a surrogate marker for NF-κB activation, was measured by immunostaining.</p> <p>Results</p> <p>Three saponin fractions and two individual ginsenosides exhibited the inhibitory effects on monocyte adhesion on TNF-α-activated HCAECs and expression of ICAM-1 and VCAM-1 at both mRNA and protein levels <it>in vitro</it>. The saponin fractions exhibited a similar trend of the inhibitory effects on the mRNA expression of CAMs in the aorta of HCD-fed rat <it>in vivo</it>. These inhibitory effect of saponin fractions maybe attribute partially to the suppression of the TNF-α-induced NF-κB activation.</p> <p>Conclusion</p> <p>Our data demonstrate that saponin fractions (<it>ie </it>PNS, PDS and PTS) and major individual ginsenosides (<it>ie </it>Rg<sub>1 </sub>and Rb<sub>1</sub>) have potential anti-atherogenic effects. Among the tested saponin fractions, PDS is the most potent saponin fraction against TNF-α-induced monocyte adhesion as well as the expression of adhesion molecules <it>in vitro </it>and <it>in vivo</it>.</p

    Prompt Space Optimizing Few-shot Reasoning Success with Large Language Models

    Full text link
    Prompt engineering is an essential technique for enhancing the abilities of large language models (LLMs) by providing explicit and specific instructions. It enables LLMs to excel in various tasks, such as arithmetic reasoning, question answering, summarization, relation extraction, machine translation, and sentiment analysis. Researchers have been actively exploring different prompt engineering strategies, such as Chain of Thought (CoT), Zero-CoT, and In-context learning. However, an unresolved problem arises from the fact that current approaches lack a solid theoretical foundation for determining optimal prompts. To address this issue in prompt engineering, we propose a new and effective approach called Prompt Space. Our methodology utilizes text embeddings to obtain basis vectors by matrix decomposition, and then constructs a space for representing all prompts. Prompt Space significantly outperforms state-of-the-art prompt paradigms on ten public reasoning benchmarks. Notably, without the help of the CoT method and the prompt "Let's think step by step", Prompt Space shows superior performance over the few-shot method. Overall, our approach provides a robust and fundamental theoretical framework for selecting simple and effective prompts. This advancement marks a significant step towards improving prompt engineering for a wide variety of applications in LLMs.Comment: Natural language processing (NLP
    corecore