2,694 research outputs found

    Quantum Hall effect in exfoliated graphene affected by charged impurities: metrological measurements

    Full text link
    Metrological investigations of the quantum Hall effect (QHE) completed by transport measurements at low magnetic field are carried out in a-few-μm\mu\mathrm{m}-wide Hall bars made of monolayer (ML) or bilayer (BL) exfoliated graphene transferred on Si/SiO2\textrm{Si/SiO}_{2} substrate. From the charge carrier density dependence of the conductivity and from the measurement of the quantum corrections at low magnetic field, we deduce that transport properties in these devices are mainly governed by the Coulomb interaction of carriers with a large concentration of charged impurities. In the QHE regime, at high magnetic field and low temperature (T<1.3KT<1.3 \textrm{K}), the Hall resistance is measured by comparison with a GaAs based quantum resistance standard using a cryogenic current comparator. In the low dissipation limit, it is found quantized within 5 parts in 10710^{7} (one standard deviation, 1σ1 \sigma) at the expected rational fractions of the von Klitzing constant, respectively RK/2R_{\mathrm{K}}/2 and RK/4R_{\mathrm{K}}/4 in the ML and BL devices. These results constitute the most accurate QHE quantization tests to date in monolayer and bilayer exfoliated graphene. It turns out that a main limitation to the quantization accuracy, which is found well above the 10−910^{-9} accuracy usually achieved in GaAs, is the low value of the QHE breakdown current being no more than 1μA1 \mu\mathrm{A}. The current dependence of the longitudinal conductivity investigated in the BL Hall bar shows that dissipation occurs through quasi-elastic inter-Landau level scattering, assisted by large local electric fields. We propose that charged impurities are responsible for an enhancement of such inter-Landau level transition rate and cause small breakdown currents.Comment: 14 pages, 9 figure

    Practical quantum realization of the ampere from the electron charge

    Full text link
    One major change of the future revision of the International System of Units (SI) is a new definition of the ampere based on the elementary charge \emph{e}. Replacing the former definition based on Amp\`ere's force law will allow one to fully benefit from quantum physics to realize the ampere. However, a quantum realization of the ampere from \emph{e}, accurate to within 10−810^{-8} in relative value and fulfilling traceability needs, is still missing despite many efforts have been spent for the development of single-electron tunneling devices. Starting again with Ohm's law, applied here in a quantum circuit combining the quantum Hall resistance and Josephson voltage standards with a superconducting cryogenic amplifier, we report on a practical and universal programmable quantum current generator. We demonstrate that currents generated in the milliampere range are quantized in terms of efJef_\mathrm{J} (fJf_\mathrm{J} is the Josephson frequency) with a measurement uncertainty of 10−810^{-8}. This new quantum current source, able to deliver such accurate currents down to the microampere range, can greatly improve the current measurement traceability, as demonstrated with the calibrations of digital ammeters. Beyond, it opens the way to further developments in metrology and in fundamental physics, such as a quantum multimeter or new accurate comparisons to single electron pumps.Comment: 15 pages, 4 figure
    • …
    corecore