127 research outputs found

    Quantization of generally covariant systems with extrinsic time

    Get PDF
    A generally covariant system can be deparametrized by means of an ``extrinsic'' time, provided that the metric has a conformal ``temporal'' Killing vector and the potential exhibits a suitable behavior with respect to it. The quantization of the system is performed by giving the well ordered constraint operators which satisfy the algebra. The searching of these operators is enlightned by the methods of the BRST formalism.Comment: 10 pages. Definite published versio

    Revised Canonical Quantum Gravity via the Frame Fixing

    Full text link
    We present a new reformulation of the canonical quantum geometrodynamics, which allows to overcome the fundamental problem of the frozen formalism and, therefore, to construct an appropriate Hilbert space associate to the solution of the restated dynamics. More precisely, to remove the ambiguity contained in the Wheeler-DeWitt approach, with respect to the possibility of a (3 + 1)-splitting when the space-time is in a quantum regime, we fix the reference frame (i.e. the lapse function and the shift vector) by introducing the so-called kinematical action; as a consequence the new super-Hamiltonian constraint becomes a parabolic one and we arrive to a Schroedinger-like approach for the quantum dynamics. In the semiclassical limit our theory provides General Relativity in the presence of an additional energy-momentum density contribution coming from no longer zero eigenvalues of the Hamiltonian constraints; the interpretation of these new contributions comes out in natural way as soon as it is recognized that the kinematical action can be recasted in such a way it describes a pressureless, but, in general, non geodesic perfect fluid.Comment: 24 pages, 0 figures, to appear on Int. Jour. Mod. Phys.

    Covariant perturbations of domain walls in curved spacetime

    Get PDF
    A manifestly covariant equation is derived to describe the perturbations in a domain wall on a given background spacetime. This generalizes recent work on domain walls in Minkowski space and introduces a framework for examining the stability of relativistic bubbles in curved spacetimes.Comment: 15 pages,ICN-UNAM-93-0

    Dust as a Standard of Space and Time in Canonical Quantum Gravity

    Get PDF
    The coupling of the metric to an incoherent dust introduces into spacetime a privileged dynamical reference frame and time foliation. The comoving coordinates of the dust particles and the proper time along the dust worldlines become canonical coordinates in the phase space of the system. The Hamiltonian constraint can be resolved with respect to the momentum that is canonically conjugate to the dust time. Imposition of the resolved constraint as an operator restriction on the quantum states yields a functional Schr\"{o}dinger equation. The ensuing Hamiltonian density has an extraordinary feature: it depends only on the geometric variables, not on the dust coordinates or time. This has three important consequences. First, the functional Schr\"{o}dinger equation can be solved by separating the dust time from the geometric variables. Second, the Hamiltonian densities strongly commute and therefore can be simultaneously defined by spectral analysis. Third, the standard constraint system of vacuum gravity is cast into a form in which it generates a true Lie algebra. The particles of dust introduce into space a privileged system of coordinates that allows the supermomentum constraint to be solved explicitly. The Schr\"{o}dinger equation yields a conserved inner product that can be written in terms of either the instantaneous state functionals or the solutions of constraints. Examples of gravitational observables are given, though neither the intrinsic metric nor the extrinsic curvature are observables. Disregarding factor--ordering difficulties, the introduction of dust provides a satisfactory phenomenological approach to the problem of time in canonical quantum gravity.Comment: 56 pages (REVTEX file + 3 postscipt figure files

    A Kucha\v{r} Hypertime Formalism For Cylindrically Symmetric Spacetimes With Interacting Scalar Fields

    Full text link
    The Kucha\v{r} canonical transformation for vacuum geometrodynamics in the presence of cylindrical symmetry is applied to a general non-vacuum case. The resulting constraints are highly non-linear and non-local in the momenta conjugate to the Kucha\v{r} embedding variables. However, it is demonstrated that the constraints can be solved for these momenta and thus the dynamics of cylindrically symmetric models can be cast in a form suitable for the construction of a hypertime functional Schr\"odinger equation.Comment: 5 pages, LaTeX, UBCTP-93-02

    Dirac Constraint Quantization of a Dilatonic Model of Gravitational Collapse

    Get PDF
    We present an anomaly-free Dirac constraint quantization of the string-inspired dilatonic gravity (the CGHS model) in an open 2-dimensional spacetime. We show that the quantum theory has the same degrees of freedom as the classical theory; namely, all the modes of the scalar field on an auxiliary flat background, supplemented by a single additional variable corresponding to the primordial component of the black hole mass. The functional Heisenberg equations of motion for these dynamical variables and their canonical conjugates are linear, and they have exactly the same form as the corresponding classical equations. A canonical transformation brings us back to the physical geometry and induces its quantization.Comment: 37 pages, LATEX, no figures, submitted to Physical Review

    Cosmological Time in Quantum Supergravity

    Get PDF
    The version of supergravity formulated by Ogievetsky and Sokatchev is almost identical to the conventional N=1N=1 theory, except that the cosmological constant Λ\Lambda appears as a dynamical variable which is constant only by virtue of the field equations. We consider the canonical quantisation of this theory, and show that the wave function evolves with respect to a dynamical variable which can be interpreted as a cosmological time parameter. The square of the modulus of the wave function obeys a set of simple conservation equations and can be interpreted as a probability density functional. The usual problems associated with time in quantum gravity are avoided.Comment: 12 pages, LaTe

    Relativistic Solenoids

    Full text link
    We construct a general relativistic analogy of an infinite solenoid, i.e., of an infinite cylinder with zero electric charge and non-zero electric current in the direction tangential to the cylinder and perpendicular to its axis. We further show that the solution has a good weak-field limit.Comment: 9 pages, 2 figure

    Constraints in Quantum Geometrodynamics

    Get PDF
    We compare different treatments of the constraints in canonical quantum gravity. The standard approach on the superspace of 3--geometries treats the constraints as the sole carriers of the dynamic content of the theory, thus rendering the traditional dynamical equations obsolete. Quantization of the constraints in both the Dirac and ADM square root Hamiltonian approaches leads to the well known problems of time evolution. These problems of time are of both an interpretational and technical nature. In contrast, the geometrodynamic quantization procedure on the superspace of the true dynamical variables separates the issues of quantization from the enforcement of the constraints. The resulting theory takes into account states that are off-shell with respect to the constraints, and thus avoids the problems of time. We develop, for the first time, the geometrodynamic quantization formalism in a general setting and show that it retains all essential features previously illustrated in the context of homogeneous cosmologies.Comment: 36 pages, no figures, submitted to IJMPA, Rewording, Fixed Typo

    On Unitary Time Evolution in Gowdy T3T^3 Cosmologies

    Get PDF
    A non-perturbative canonical quantization of Gowdy T3T^3 polarized models carried out recently is considered. This approach profits from the equivalence between the symmetry reduced model and 2+1 gravity coupled to a massless real scalar field. The system is partially gauge fixed and a choice of internal time is performed, for which the true degrees of freedom of the model reduce to a massless free scalar field propagating on a 2-dimensional expanding torus. It is shown that the symplectic transformation that determines the classical dynamics cannot be unitarily implemented on the corresponding Hilbert space of quantum states. The implications of this result for both quantization of fields on curved manifolds and physically relevant questions regarding the initial singularity are discussed.Comment: 16 pages, no figures, latex file; references added, a proof included. Final version to appear in IJMP
    corecore