711 research outputs found

    Entanglement for rank-2 mixed states

    Get PDF
    In a recent paper, Rungta et. al. [Phys. Rev. A, 64, 042315, 2001] introduced a measure of mixed-state entanglement called the I-concurrence for arbitrary pairs of qudits. We find an exact formula for an entanglement measure closely related to the I-concurrence, the I-tangle, for all mixed states of two qudits having no more than two nonzero eigenvalues. We use this formula to provide a tight upper bound for the entanglement of formation for rank-2 mixed states of a qubit and a qudit.Comment: 5 pages, uses amsthm and mathrsf

    Lower Bound on Entanglement of Formation for the Qubit-Qudit System

    Get PDF
    Wootters [PRL 80, 2245 (1998)] has derived a closed formula for the entanglement of formation (EOF) of an arbitrary mixed state in a system of two qubits. There is no known closed form expression for the EOF of an arbitrary mixed state in any system more complicated than two qubits. This paper, via a relatively straightforward generalization of Wootters' original derivation, obtains a closed form lower bound on the EOF of an arbitary mixed state of a system composed of a qubit and a qudit (a d-level quantum system, with d greater than or equal to 3). The derivation of the lower bound is detailed for a system composed of a qubit and a qutrit (d = 3); the generalization to d greater than 3 then follows readily.Comment: 14 pages, 0 Figures, 0 Table

    Local cloning of two product states

    Full text link
    Local quantum operations and classical communication (LOCC) put considerable constraints on many quantum information processing tasks such as cloning and discrimination. Surprisingly however, discrimination of any two pure states survives such constraints in some sense. In this paper, we show that cloning is not that lucky; namely, conclusive LOCC cloning of two product states is strictly less efficient than global cloning.Comment: Totally rewritten with improved result

    Perfect Test of Entanglement for Two-level Systems

    Full text link
    A 3-setting Bell-type inequality enforced by the indeterminacy relation of complementary local observables is proposed as an experimental test of the 2-qubit entanglement. The proposed inequality has an advantage of being a sufficient and necessary criterion of the separability. Therefore any entangled 2-qubit state cannot escape the detection by this kind of tests. It turns out that the orientation of the local testing observables plays a crucial role in our perfect detection of the entanglement.Comment: 4 pages, RevTe

    Local cloning of Bell states and distillable entanglement

    Full text link
    The necessary and sufficient amount of entanglement required for cloning of orthogonal Bell states by local operation and classical communication is derived, and using this result, we provide here some additional examples of reversible, as well as irreversible states.Comment: 5 pages, two columns, Latex. Few typos have been corrected. An explanation of the teleportation map (eqn. (3) in the manuscript) has been provide

    Global Entanglement for Multipartite Quantum States

    Full text link
    Based on the residual entanglement [9] (Phys. Rev. A \textbf{71}, 044301 (2005)), we present the global entanglement for a multipartite quantum state. The measure is shown to be also obtained by the bipartite partitions of the multipartite state. The distinct characteristic of the global entanglement is that it consists of the sum of different entanglement contributions. The measure can provide sufficient and necessary condition of fully separability for pure states and be conveniently extended to mixed states by minimizing the convex hull. To test the sufficiency of the measure for mixed states, we evaluate the global entanglement of bound entangled states. The properties of the measure discussed finally show the global entanglement is an entanglement monotone.Comment: 6 page

    Separability for lattice systems at high temperature

    Full text link
    Equilibrium states of infinite extended lattice systems at high temperature are studied with respect to their entanglement. Two notions of separability are offered. They coincide for finite systems but differ for infinitely extended ones. It is shown that for lattice systems with localized interaction for high enough temperature there exists no local entanglement. Even more quasifree states at high temperature are also not distillably entangled for all local regions of arbitrary size. For continuous systems entanglement survives for all temperatures. In mean field theories it is possible, that local regions are not entangled but the entanglement is hidden in the fluctuation algebra

    Teleportation scheme implementing contextually the Universal Optimal Quantum Cloning Machine and the Universal Not Gate. Complete experimental realization

    Full text link
    By a significant modification of the standard protocol of quantum state Teleportation two processes ''forbidden'' by quantum mechanics in their exact form, the Universal NOT gate and the Universal Optimal Quantum Cloning Machine, have been implemented contextually and optimally by a fully linear method. In particular, the first experimental demonstration of the Tele-UNOT Gate, a novel quantum information protocol has been reported (cfr. quant-ph/0304070). A complete experimental realization of the protocol is presented here.Comment: 11 pages, 3 figure
    corecore