13,441 research outputs found
On empirical models of the upper atmosphere in the polar regions
Modified expression for exospheric temperature in Jacchia static diffusion models of upper atmosphere in polar region
Comparisons of elastic and creep deformation linearly dependent upon stress
The theory of linear elasticity provides a complete description of reversible deformation under small stresses for both isotropic and anisotropic solids. At elevated temperatures, creep deformation sometimes occurs at a rate that is linearly dependent upon stress. When this form of creep arises from vacancy movement, there is possibility of anisotropic behaviour through the orientational dependence of average grain dimensions. This indicates that the elasticity theory may be utilised to provide comparable descriptions of such creep deformation, with creep strain built up of equal increments of strain occurring in equal intervals of time. The extent of this analogy is explored with the conclusion that its usefulness is substantial when grains are small in relation to geometrical features of the component but it is no longer applicable when the grains approach the size of these features and where there is a high gradient of stress
Some mechanisms for a theory of the reticular formation Final report, 15 Nov. 1965 - 14 Nov. 1966
Nonlinear, probabilistic hybrid computer concepts for specifying operational schemata of central nervous system model
The outcome of protoplanetary dust growth: pebbles, boulders, or planetesimals? I. Mapping the zoo of laboratory collision experiments
The growth processes from protoplanetary dust to planetesimals are not fully
understood. Laboratory experiments and theoretical models have shown that
collisions among the dust aggregates can lead to sticking, bouncing, and
fragmentation. However, no systematic study on the collisional outcome of
protoplanetary dust has been performed so far so that a physical model of the
dust evolution in protoplanetary disks is still missing. We intend to map the
parameter space for the collisional interaction of arbitrarily porous dust
aggregates. This parameter space encompasses the dust-aggregate masses, their
porosities and the collision velocity. With such a complete mapping of the
collisional outcomes of protoplanetary dust aggregates, it will be possible to
follow the collisional evolution of dust in a protoplanetary disk environment.
We use literature data, perform own laboratory experiments, and apply simple
physical models to get a complete picture of the collisional interaction of
protoplanetary dust aggregates. In our study, we found four different types of
sticking, two types of bouncing, and three types of fragmentation as possible
outcomes in collisions among protoplanetary dust aggregates. We distinguish
between eight combinations of porosity and mass ratio. For each of these cases,
we present a complete collision model for dust-aggregate masses between 10^-12
and 10^2 g and collision velocities in the range 10^-4 to 10^4 cm/s for
arbitrary porosities. This model comprises the collisional outcome, the
mass(es) of the resulting aggregate(s) and their porosities. We present the
first complete collision model for protoplanetary dust. This collision model
can be used for the determination of the dust-growth rate in protoplanetary
disks.Comment: accepted by Astronomy and Astrophysic
Bio-inspired swing leg control for spring-mass robots running on ground with unexpected height disturbance
We proposed three swing leg control policies for spring-mass running robots, inspired by experimental data from our recent collaborative work on ground running birds. Previous investigations suggest that animals may prioritize injury avoidance and/or efficiency as their objective function during running rather than maintaining limit-cycle stability. Therefore, in this study we targeted structural capacity (maximum leg force to avoid damage) and efficiency as the main goals for our control policies, since these objective functions are crucial to reduce motor size and structure weight. Each proposed policy controls the leg angle as a function of time during flight phase such that its objective function during the subsequent stance phase is regulated. The three objective functions that are regulated in the control policies are (i) the leg peak force, (ii) the axial impulse, and (iii) the leg actuator work. It should be noted that each control policy regulates one single objective function. Surprisingly, all three swing leg control policies result in nearly identical subsequent stance phase dynamics. This implies that the implementation of any of the proposed control policies would satisfy both goals (damage avoidance and efficiency) at once. Furthermore, all three control policies require a surprisingly simple leg angle adjustment: leg retraction with constant angular acceleration
Microwave Scattering and Noise Emission from Afterglow Plasmas in a Magnetic Field
The microwave reflection and noise emission (extraordinary mode) from cylindrical rare‐gas (He, Ne, Ar) afterglow plasmas in an axial magnetic field is described. Reflection and noise emission are measured as a function of magnetic field near electron cyclotron resonance (ω ≈ ω_c) with electron density as a parameter (ω_p < ω). A broad peak, which shifts to lower values of ω_c/ω) as electron density increases, is observed for (ω_c/ω) ≤ 1. For all values of electron density a second sharp peak is found very close to cyclotron resonance in reflection measurements. This peak does not occur in the emission data. Calculations of reflection and emission using a theoretical model consisting of a one‐dimensional, cold plasma slab with nonuniform electron density yield results in qualitative agreement with the observations. Both the experimental and theoretical results suggest that the broad, density‐dependent peak involves resonance effects at the upper hybrid frequency ((ω_h)^2 = (ω_c)^2 + (ω_p)^2) of the plasma
End states, ladder compounds, and domain wall fermions
A magnetic field applied to a cross linked ladder compound can generate
isolated electronic states bound to the ends of the chain. After exploring the
interference phenomena responsible, I discuss a connection to the domain wall
approach to chiral fermions in lattice gauge theory. The robust nature of the
states under small variations of the bond strengths is tied to chiral symmetry
and the multiplicative renormalization of fermion masses.Comment: 10 pages, 4 figures; final version for Phys. Rev. Let
Compression Behaviour of Porous Dust Agglomerates
The early planetesimal growth proceeds through a sequence of sticking
collisions of dust agglomerates. Very uncertain is still the relative velocity
regime in which growth rather than destruction can take place. The outcome of a
collision depends on the bulk properties of the porous dust agglomerates.
Continuum models of dust agglomerates require a set of material parameters that
are often difficult to obtain from laboratory experiments. Here, we aim at
determining those parameters from ab-initio molecular dynamics simulations. Our
goal is to improveon the existing model that describe the interaction of
individual monomers. We use a molecular dynamics approach featuring a detailed
micro-physical model of the interaction of spherical grains. The model includes
normal forces, rolling, twisting and sliding between the dust grains. We
present a new treatment of wall-particle interaction that allows us to perform
customized simulations that directly correspond to laboratory experiments. We
find that the existing interaction model by Dominik & Tielens leads to a too
soft compressive strength behavior for uni and omni-directional compression.
Upon making the rolling and sliding coefficients stiffer we find excellent
agreement in both cases. Additionally, we find that the compressive strength
curve depends on the velocity with which the sample is compressed. The modified
interaction strengths between two individual dust grains will lead to a
different behaviour of the whole dust agglomerate. This will influences the
sticking probabilities and hence the growth of planetesimals. The new parameter
set might possibly lead to an enhanced sticking as more energy can be stored in
the system before breakup.Comment: 11 pages, 14 figures, accepted for publication in A&
The outcome of protoplanetary dust growth: pebbles, boulders, or planetesimals? II. Introducing the bouncing barrier
The sticking of micron sized dust particles due to surface forces in
circumstellar disks is the first stage in the production of asteroids and
planets. The key ingredients that drive this process are the relative velocity
between the dust particles in this environment and the complex physics of dust
aggregate collisions. Here we present the results of a collision model, which
is based on laboratory experiments of these aggregates. We investigate the
maximum aggregate size and mass that can be reached by coagulation in
protoplanetary disks. We model the growth of dust aggregates at 1 AU at the
midplane at three different gas densities. We find that the evolution of the
dust does not follow the previously assumed growth-fragmentation cycles.
Catastrophic fragmentation hardly occurs in the three disk models. Furthermore
we see long lived, quasi-steady states in the distribution function of the
aggregates due to bouncing. We explore how the mass and the porosity change
upon varying the turbulence parameter and by varying the critical mass ratio of
dust particles. Particles reach Stokes numbers of roughly 10^-4 during the
simulations. The particle growth is stopped by bouncing rather than
fragmentation in these models. The final Stokes number of the aggregates is
rather insensitive to the variations of the gas density and the strength of
turbulence. The maximum mass of the particles is limited to approximately 1
gram (chondrule-sized particles). Planetesimal formation can proceed via the
turbulent concentration of these aerodynamically size-sorted chondrule-sized
particles.Comment: accepted for publication in A&
- …