234 research outputs found
Quasi-freestanding and single-atom thick layer of hexagonal boron nitride as a substrate for graphene synthesis
We demonstrate that freeing a single-atom thick layer of hexagonal boron
nitride (hbn) from tight chemical bonding to a Ni(111) thin film grown on a
W(110) substrate can be achieved by intercalation of Au atoms into the
interface. This process has been systematically investigated using
angle-resolved photoemission spectroscopy, X-ray photoemission and absorption
techniques. It has been demonstrated that the transition of the hbn layer from
the "rigid" into the "quasi-freestanding" state is accompanied by a change of
its lattice constant. Using chemical vapor deposition, graphene has been
successfully synthesized on the insulating, quasi-freestanding hbn monolayer.
We anticipate that the in situ synthesized weakly interacting graphene/hbn
double layered system could be further developed for technological applications
and may provide perspectives for further inquiry into the unusual electronic
properties of graphene.Comment: in print in Phys. Rev.
High-resolution resonant inelastic soft X-ray scattering as a probe of the crystal electrical field in lanthanides demonstrated for the case of CeRh2Si2
The magnetic properties of rare earth compounds are usually well captured by
assuming a fully localized f shell and only considering the Hund's rule ground
state multiplet split by a crystal electrical field (CEF). Currently, the
standard technique for probing CEF excitations in lanthanides is inelastic
neutron scattering. Here we show that with the recent leap in energy
resolution, resonant inelastic soft X-ray scattering has become a serious
alternative for looking at CEF excitations with some distinct advantages
compared to INS. As an example we study the CEF scheme in CeRh2Si2, a system
that has been intensely studied for more than two decades now but for which no
consensus has been reached yet as to its CEF scheme. We used two new features
that have only become available very recently in RIXS, high energy resolution
of about 30 meV as well as polarization analysis in the scattered beam, to find
a unique CEF description for CeRh2Si2. The result agrees well with previous INS
and magnetic susceptibility measurements. Due to its strong resonant character,
RIXS is applicable to very small samples, presents very high cross sections for
all lanthanides, and further benefits from the very weak coupling to phonon
excitation. The rapid progress in energy resolution of RIXS spectrometers is
making this technique increasingly attractive for the investigation of the CEF
scheme in lanthanides
Recommended from our members
Controlled assembly of graphene-capped nickel, cobalt and iron silicides
In-situ dendrite/metallic glass matrix composites (MGMCs) with a composition of Ti46Zr20V12Cu5Be17 exhibit ultimate tensile strength of 1510 MPa and fracture strain of about 7.6%. A tensile deformation model is established, based on the five-stage classification: (1) elastic-elastic, (2) elastic-plastic, (3) plastic-plastic (yield platform), (4) plastic-plastic (work hardening), and (5) plastic-plastic (softening) stages, analogous to the tensile behavior of common carbon steels. The constitutive relations strongly elucidate the tensile deformation mechanism. In parallel, the simulation results by a finite-element method (FEM) are in good agreement with the experimental findings and theoretical calculations. The present study gives a mathematical model to clarify the work-hardening behavior of dendrites and softening of the amorphous matrix. Furthermore, the model can be employed to simulate the tensile behavior of in-situ dendrite/MGMCs
CeFePO: f-d hybridization and quenching of superconductivity
Being homologue to the new, Fe-based type of high-temperature
superconductors, CeFePO exhibits magnetism, Kondo and heavy-fermion phenomena.
We experimentally studied the electronic structure of CeFePO by means of
angle-resolved photoemission spectroscopy. In particular, contributions of the
Ce 4f-derived states and their hybridization to the Fe 3d bands were explored
using both symmetry selection rules for excitation and their photoionization
cross-section variations as a function of photon energy. It was experimentally
found - and later on confirmed by LDA as well as DMFT calculations - that the
Ce 4f states hybridize to the Fe 3d states of d_{3z^2-r^2} symmetry near the
Fermi level that discloses their participation in the occurring
electron-correlation phenomena and provides insight into mechanism of
superconductivity in oxopnictides.Comment: 5 pages, 3 figure
How chemical pressure affects the fundamental properties of rare-earth pnictides: an ARPES view
Angle-resolved photoelectron spectroscopy, supplemented by theoretical
calculations has been applied to study the electronic structure of
heavy-fermion material CeFePO, a homologue to the Fe-based high-temperature
superconductors, and CeFeAs_0.7P_0.3O, where the applied chemical pressure
results in a ferromagnetic order of the 4f moments. A comparative analysis
reveals characteristic differences in the Fe-derived band structure for these
materials, implying a rather different hybridization of valence electrons to
the localized 4f orbitals. In particular, our results suggest that the
ferromagnetism of Ce moments in CeFeAs_0.7P_0.3O is mediated mainly by Fe
3d_xz/yz orbitals, while the Kondo screening in CeFePO is instead due to a
strong interaction of Fe 3d_3z^2-r^2 orbitals.Comment: 5 pages, 3 figures, accepted for publication in Phys. Rev. B (Rapid
Evolution of magnetism in Yb(Rh_(1-x)Co_x)2Si2
We present a study of the evolution of magnetism from the quantum critical
system YbRh2Si2 to the stable trivalent Yb system YbCo2Si2. Single crystals of
Yb(Rh_(1-x)Co_x)2Si2 were grown for 0 < x < 1 and studied by means of magnetic
susceptibility, electrical resistivity, and specific heat measurements, as well
as photoemission spectroscopy. The results evidence a complex magnetic phase
diagram, with a non-monotonic evolution of T_N and two successive transitions
for some compositions resulting in two tricritical points. The strong
similarity with the phase diagram of YbRh2Si2 under pressure indicates that Co
substitution basically corresponds to the application of positive chemical
pressure. Analysis of the data proves a strong reduction of the Kondo
temperature T_K with increasing Co content, T_K becoming smaller than T_N for x
~ 0.5, implying a strong localization of the 4f electrons. Furthermore,
low-temperature susceptibility data confirm a competition between ferromagnetic
and antiferromagnetic exchange. The series Yb(Rh_(1-x)Co_x)2Si2 provides an
excellent experimental opportunity to gain a deeper understanding of the
magnetism at the quantum critical point in the vicinity of YbRh2Si2 where the
antiferromagnetic phase disappears (T_N=>0).Comment: 11 pages, 9 figure
- …