234 research outputs found

    Quasi-freestanding and single-atom thick layer of hexagonal boron nitride as a substrate for graphene synthesis

    Full text link
    We demonstrate that freeing a single-atom thick layer of hexagonal boron nitride (hbn) from tight chemical bonding to a Ni(111) thin film grown on a W(110) substrate can be achieved by intercalation of Au atoms into the interface. This process has been systematically investigated using angle-resolved photoemission spectroscopy, X-ray photoemission and absorption techniques. It has been demonstrated that the transition of the hbn layer from the "rigid" into the "quasi-freestanding" state is accompanied by a change of its lattice constant. Using chemical vapor deposition, graphene has been successfully synthesized on the insulating, quasi-freestanding hbn monolayer. We anticipate that the in situ synthesized weakly interacting graphene/hbn double layered system could be further developed for technological applications and may provide perspectives for further inquiry into the unusual electronic properties of graphene.Comment: in print in Phys. Rev.

    High-resolution resonant inelastic soft X-ray scattering as a probe of the crystal electrical field in lanthanides demonstrated for the case of CeRh2Si2

    Get PDF
    The magnetic properties of rare earth compounds are usually well captured by assuming a fully localized f shell and only considering the Hund's rule ground state multiplet split by a crystal electrical field (CEF). Currently, the standard technique for probing CEF excitations in lanthanides is inelastic neutron scattering. Here we show that with the recent leap in energy resolution, resonant inelastic soft X-ray scattering has become a serious alternative for looking at CEF excitations with some distinct advantages compared to INS. As an example we study the CEF scheme in CeRh2Si2, a system that has been intensely studied for more than two decades now but for which no consensus has been reached yet as to its CEF scheme. We used two new features that have only become available very recently in RIXS, high energy resolution of about 30 meV as well as polarization analysis in the scattered beam, to find a unique CEF description for CeRh2Si2. The result agrees well with previous INS and magnetic susceptibility measurements. Due to its strong resonant character, RIXS is applicable to very small samples, presents very high cross sections for all lanthanides, and further benefits from the very weak coupling to phonon excitation. The rapid progress in energy resolution of RIXS spectrometers is making this technique increasingly attractive for the investigation of the CEF scheme in lanthanides

    CeFePO: f-d hybridization and quenching of superconductivity

    Get PDF
    Being homologue to the new, Fe-based type of high-temperature superconductors, CeFePO exhibits magnetism, Kondo and heavy-fermion phenomena. We experimentally studied the electronic structure of CeFePO by means of angle-resolved photoemission spectroscopy. In particular, contributions of the Ce 4f-derived states and their hybridization to the Fe 3d bands were explored using both symmetry selection rules for excitation and their photoionization cross-section variations as a function of photon energy. It was experimentally found - and later on confirmed by LDA as well as DMFT calculations - that the Ce 4f states hybridize to the Fe 3d states of d_{3z^2-r^2} symmetry near the Fermi level that discloses their participation in the occurring electron-correlation phenomena and provides insight into mechanism of superconductivity in oxopnictides.Comment: 5 pages, 3 figure

    How chemical pressure affects the fundamental properties of rare-earth pnictides: an ARPES view

    Get PDF
    Angle-resolved photoelectron spectroscopy, supplemented by theoretical calculations has been applied to study the electronic structure of heavy-fermion material CeFePO, a homologue to the Fe-based high-temperature superconductors, and CeFeAs_0.7P_0.3O, where the applied chemical pressure results in a ferromagnetic order of the 4f moments. A comparative analysis reveals characteristic differences in the Fe-derived band structure for these materials, implying a rather different hybridization of valence electrons to the localized 4f orbitals. In particular, our results suggest that the ferromagnetism of Ce moments in CeFeAs_0.7P_0.3O is mediated mainly by Fe 3d_xz/yz orbitals, while the Kondo screening in CeFePO is instead due to a strong interaction of Fe 3d_3z^2-r^2 orbitals.Comment: 5 pages, 3 figures, accepted for publication in Phys. Rev. B (Rapid

    Evolution of magnetism in Yb(Rh_(1-x)Co_x)2Si2

    Full text link
    We present a study of the evolution of magnetism from the quantum critical system YbRh2Si2 to the stable trivalent Yb system YbCo2Si2. Single crystals of Yb(Rh_(1-x)Co_x)2Si2 were grown for 0 < x < 1 and studied by means of magnetic susceptibility, electrical resistivity, and specific heat measurements, as well as photoemission spectroscopy. The results evidence a complex magnetic phase diagram, with a non-monotonic evolution of T_N and two successive transitions for some compositions resulting in two tricritical points. The strong similarity with the phase diagram of YbRh2Si2 under pressure indicates that Co substitution basically corresponds to the application of positive chemical pressure. Analysis of the data proves a strong reduction of the Kondo temperature T_K with increasing Co content, T_K becoming smaller than T_N for x ~ 0.5, implying a strong localization of the 4f electrons. Furthermore, low-temperature susceptibility data confirm a competition between ferromagnetic and antiferromagnetic exchange. The series Yb(Rh_(1-x)Co_x)2Si2 provides an excellent experimental opportunity to gain a deeper understanding of the magnetism at the quantum critical point in the vicinity of YbRh2Si2 where the antiferromagnetic phase disappears (T_N=>0).Comment: 11 pages, 9 figure
    • …
    corecore