3 research outputs found
Supramolecular materials: molecular packing of tetranitrotetrapropoxycalix[4]arene in highly stable films with second-order nonlinear optical properties
Highly stable films of tetranitrotetrapropoxycalix[4]arene (9) with second-order nonlinear optical (NLO) properties and a noncentrosymmetric structure were obtained by a novel crystallization process at 130-140 degrees C in a de electric field. The packing of 9 in these films was elucidated by a combination of X-ray diffraction, angle-dependent second- harmonic generation, and scanning force microscopy (SFM). The experimental results agree well with solid-state molecular dynamics calculations for these films. No crystalline phase was observed for nitrocalix[4]arene derivatives with longer or branched alkyl chains; this explains the limited NLO stability of films of these calixarenes. Scanning force microscopy on the aligned films of 9 showed two distinct surface lattice structures: a rectangular lattice (a = 9.3, b = 11.7 Angstrom) and a pseudohexagonal lattice (d approximate to 11.4 Angstrom). The combination of these data with the interlayer distance of 8.9 Angstrom (X-ray diffraction) allowed the packing of molecules of 9 in these structures to be fully elucidated at the molecular level
Developmental and Wound-, Cold-, Desiccation-, Ultraviolet-B-Stress-Induced Modulations in the Expression of the Petunia Zinc Finger Transcription Factor Gene ZPT2-2
The ZPT2-2 gene belongs to the EPF gene family in petunia (Petunia hybrida), which encodes proteins with TFIIIA-type zinc-finger DNA-binding motifs. To elucidate a possible function for ZPT2-2, we analyzed its pattern of expression in relation to different developmental and physiological stress signals. The activity of the ZPT2-2 promoter was analyzed using a firefly luciferase (LUC) reporter gene, allowing for continuous measurements of transgene activity in planta. We show that ZPT2-2::LUC is active in all plant tissues, but is strongly modulated in cotyledons upon germination, in leaves in response to desiccation, cold treatment, wounding, or ultraviolet-B light, and in petal tissue in response to pollination of the stigma. Analysis of mRNA levels indicated that the modulations in ZPT2-2::LUC expression reflect modulations in endogenous ZPT2-2 gene expression. The change in ZPT2-2::LUC activity by cold treatment, wounding, desiccation, and ultraviolet-B light suggest that the phytohormones ethylene and jasmonic acid are involved in regulating the expression of ZPT2-2. Although up-regulation of expression of ZPT2-2 can be blocked by inhibitors of ethylene perception, expression in plants is not induced by exogenously applied ethylene. The application of jasmonic acid does result in an up-regulation of gene activity and, thus, ZPT2-2 may play a role in the realization of the jasmonic acid hormonal responses in petunia
Supramolecular materials: molecular packing of tetranitrotetrapropoxycalix[4]arene in highly stable films with second-order nonlinear optical properties
Highly stable films of tetranitrotetrapropoxycalix[4]arene (9) with second-order nonlinear optical (NLO) properties and a noncentrosymmetric structure were obtained by a novel crystallization process at 130-140 degrees C in a de electric field. The packing of 9 in these films was elucidated by a combination of X-ray diffraction, angle-dependent second- harmonic generation, and scanning force microscopy (SFM). The experimental results agree well with solid-state molecular dynamics calculations for these films. No crystalline phase was observed for nitrocalix[4]arene derivatives with longer or branched alkyl chains; this explains the limited NLO stability of films of these calixarenes. Scanning force microscopy on the aligned films of 9 showed two distinct surface lattice structures: a rectangular lattice (a = 9.3, b = 11.7 Angstrom) and a pseudohexagonal lattice (d approximate to 11.4 Angstrom). The combination of these data with the interlayer distance of 8.9 Angstrom (X-ray diffraction) allowed the packing of molecules of 9 in these structures to be fully elucidated at the molecular level