4 research outputs found

    Evidence for multiple roles for grainyheadlike 2 in the establishment and maintenance of human mucociliary airway epithelium

    Get PDF
    Most of the airways of the human lung are lined by an epithelium made up of ciliated and secretory luminal cells and undifferentiated basal progenitor cells. The integrity of this epithelium and its ability to act as a selective barrier are critical for normal lung function. In other epithelia, there is evidence that transcription factors of the evolutionarily conserved grainyheadlike (GRHL) family play key roles in coordinating multiple cellular processes required for epithelial morphogenesis, differentiation, remodeling, and repair. However, only a few target genes have been identified, and little is known about GRHL function in the adult lung. Here we focus on the role of GRHL2 in primary human bronchial epithelial cells, both as undifferentiated progenitors and as they differentiate in air-liquid interface culture into an organized mucociliary epithelium with transepithelial resistance. Using a dominant-negative protein or shRNA to inhibit GRHL2, we follow changes in epithelial phenotype and gene transcription using RNA sequencing or microarray analysis. We identify several hundreds of genes that are directly or indirectly regulated by GRHL2 in both undifferentiated cells and air-liquid interface cultures. Using ChIP sequencing to map sites of GRHL2 binding in the basal cells, we identify 7,687 potential primary targets and confirm that GRHL2 binding is strongly enriched near GRHL2-regulated genes. Taken together, the results support the hypothesis that GRHL2 plays a key role in regulating many physiological functions of human airway epithelium, including those involving cell morphogenesis, adhesion, and motility

    A congenital anemia reveals distinct targeting mechanisms for master transcription factor GATA1

    No full text
    Master regulators, such as the hematopoietic transcription factor (TF) GATA1, play an essential role in orchestrating lineage commitment and differentiation. However, the precise mechanisms by which such TFs regulate transcription through interactions with specific cis-regulatory elements remain incompletely understood. Here, we describe a form of congenital hemolytic anemia caused by missense mutations in an intrinsically disordered region of GATA1, with a poorly understood role in transcriptional regulation. Through integrative functional approaches, we demonstrate that these mutations perturb GATA1 transcriptional activity by partially impairing nuclear localization and selectively altering precise chromatin occupancy by GATA1. These alterations in chromatin occupancy and concordant chromatin accessibility changes alter faithful gene expression, with failure to both effectively silence and activate select genes necessary for effective terminal red cell production. We demonstrate how disease-causing mutations can reveal regulatory mechanisms that enable the faithful genomic targeting of master TFs during cellular differentiation

    Impact of genetic and non-genetic factors on phenotypic diversity in NBAS-associated disease.

    No full text
    Biallelic pathogenic variants in neuroblastoma-amplified sequence (NBAS) cause a pleiotropic multisystem disorder. Three clinical subgroups have been defined correlating with the localisation of pathogenic variants in the NBAS gene: variants affecting the C-terminal region of NBAS result in SOPH syndrome (short stature, optic atrophy, Pelger-Huët anomaly), variants affecting the Sec 39 domain are associated with infantile liver failure syndrome type 2 (ILFS2) and variants affecting the ß-propeller domain give rise to a combined phenotype. However, there is still unexplained phenotypic diversity across the three subgroups, challenging the current concept of genotype-phenotype correlations in NBAS-associated disease. Therefore, besides examining the genetic influence, we aim to elucidate the potential impact of pre-symptomatic diagnosis, emergency management and other modifying variables on the clinical phenotype. We investigated genotype-phenotype correlations in individuals sharing the same genotypes (n = 30 individuals), and in those sharing the same missense variants with a loss-of-function variant in trans (n = 38 individuals). Effects of a pre-symptomatic diagnosis and emergency management on the severity of acute liver failure (ALF) episodes also were analysed, comparing liver function tests (ALAT, ASAT, INR) and mortality. A strong genotype-phenotype correlation was demonstrated in individuals sharing the same genotype; this was especially true for the ILFS2 subgroup. Genotype-phenotype correlation in patients sharing only one missense variant was still high, though at a lower level. Pre-symptomatic diagnosis in combination with an emergency management protocol leads to a trend of reduced severity of ALF. High genetic impact on clinical phenotype in NBAS-associated disease facilitates monitoring and management of affected patients sharing the same genotype. Pre-symptomatic diagnosis and an emergency management protocol do not prevent ALF but may reduce its clinical severity
    corecore