1,084 research outputs found
Generalized stacking fault energy surfaces and dislocation properties of aluminum
We have employed the semidiscrete variational generalized Peierls-Nabarro
model to study the dislocation core properties of aluminum. The generalized
stacking fault energy surfaces entering the model are calculated by using
first-principles Density Functional Theory (DFT) with pseudopotentials and the
embedded atom method (EAM). Various core properties, including the core width,
splitting behavior, energetics and Peierls stress for different dislocations
have been investigated. The correlation between the core energetics and
dislocation character has been explored. Our results reveal a simple
relationship between the Peierls stress and the ratio between the core width
and atomic spacing. The dependence of the core properties on the two methods
for calculating the total energy (DFT vs. EAM) has been examined. The EAM can
give gross trends for various dislocation properties but fails to predict the
finer core structures, which in turn can affect the Peierls stress
significantly (about one order of magnitude).Comment: 25 pages, 12 figure
The influence of transition metal solutes on dislocation core structure and values of Peierls stress and barrier in tungsten
Several transition metals were examined to evaluate their potential for
improving the ductility of tungsten. The dislocation core structure and Peierls
stress and barrier of screw dislocations in binary
tungsten-transition metal alloys (WTM) were investigated using
first principles electronic structure calculations. The periodic quadrupole
approach was applied to model the structure of dislocation. Alloying
with transition metals was modeled using the virtual crystal approximation and
the applicability of this approach was assessed by calculating the equilibrium
lattice parameter and elastic constants of the tungsten alloys. Reasonable
agreement was obtained with experimental data and with results obtained from
the conventional supercell approach. Increasing the concentration of a
transition metal from the VIIIA group, i.e. the elements in columns headed by
Fe, Co and Ni, leads to reduction of the elastic constant and
increase of elastic anisotropy A=. Alloying W with a group
VIIIA transition metal changes the structure of the dislocation core from
symmetric to asymmetric, similar to results obtained for WRe
alloys in the earlier work of Romaner {\it et al} (Phys. Rev. Lett. 104, 195503
(2010))\comments{\cite{WRECORE}}. In addition to a change in the core symmetry,
the values of the Peierls stress and barrier are reduced. The latter effect
could lead to increased ductility in a tungsten-based
alloy\comments{\cite{WRECORE}}. Our results demonstrate that alloying with any
of the transition metals from the VIIIA group should have similar effect as
alloying with Re.Comment: 12 pages, 8 figures, 3 table
Finite Sized Atomistic Simulations of Screw Dislocations
The interaction of screw dislocations with an applied stress is studied using
atomistic simulations in conjunction with a continuum treatment of the role
played by the far field boundary condition. A finite cell of atoms is used to
consider the response of dislocations to an applied stress and this introduces
an additional force on the dislocation due to the presence of the boundary.
Continuum mechanics is used to calculate the boundary force which is
subsequently accounted for in the equilibrium condition for the dislocation.
Using this formulation, the lattice resistance curve and the associated Peierls
stress are calculated for screw dislocations in several close packed metals. As
a concrete example of the boundary force method, we compute the bow out of a
pinned screw dislocation; the line-tension of the dislocation is calculated
from the results of the atomistic simulations using a variational principle
that explicitly accounts for the boundary force.Comment: LaTex, 20 pages, 11 figure
Recommended from our members
Postirradiation tensile behavior of nickel-doped ferritic steels
Tensile specimens of normalized-and-tempered 9Cr-1MoVNb, 9Cr-1MoVNb-2Ni, 12Cr-1MoVW, 12Cr-1MoVW-1Ni, and 12Cr-1MoVW-2Ni were irradiated in the Experimental Breeder Reactor at 390, 450, 500, and 550/sup 0/C to displacement-damage levels of approximately 16 dpa. The only difference in the effect of irradiation on the tensile behavior of the nickel-doped and undoped steels was attributed to the difference in tempering treatments the two types of steels received. The nickel-doped steels were stronger prior to irradiation due to a lower tempering temperature. After irradiation, the properties of the steels with and without nickel were similar, indicating that the presence of nickel did not affect the behavior of the steels during irradiation. Nickel was added to the steels to study the effect of helium on the properties of these steels. Helium can be formed in an alloy containing nickel by irradiating in a mixed-spectrum reactor. To help determine the effect of helium on properties, these steels are also being irradiated in fast reactors, where little helium is formed. The present fast-reactor results indicate that it is feasible to use the nickel-doped ferritic steels to study helium effects
Enhancing axial localization with wavefront control
Enhancing the ability to resolve axial details is crucial in
three-dimensional optical imaging. We provide experimental evidence showcasing
the ultimate precision achievable in axial localization using vortex beams. For
Laguerre-Gauss (LG) beams, this remarkable limit can be attained with just a
single intensity scan. This proof-of-principle demonstrates that microscopy
techniques based on LG vortex beams can potentially benefit from the introduced
quantum-inspired superresolution protocol.Comment: 10 pages, 6 figures. Comments welcom
Recommended from our members
Helium effects on void formation in 9Cr-1MoVNb and 12Cr-1MoVW irradiated in HFIR
Up to 2 wt % Ni was added to 9Cr-1MoVNb and 12Cr-1MoVW ferritic steels to increase helium production by transmutation during HFIR irradiation. The various steels were irradiated to approx.39 dpa. Voids were found in all the undoped and nickel-doped steels irradiated at 400/sup 0/C, most of them at 500/sup 0/C, but not in any of them at 300 or 600/sup 0/C. Bubble formation, however, was increased at all temperatures in the nickel-doped steels. Maximum void formation was found at 400/sup 0/C, but swelling remained less than 0.5% even with up to 440 appM He. Irradiation at 300 to 500/sup 0/C caused dissolution of as-tempered M/sub 23/C/sub 6/ precipitates and coarsening of the lath/subgrain structure in the 9-Cr steels, whereas the microstructure generally remained stable in the 12-Cr steels. Irradiation in this temperature range also causd compositional changes in the as-tempered MC phase in all the steels, and produced combinations of fine M/sub 6/C, G, and M/sub 2/X precipitates in various steels. The subgrain boundaries appear to be strong sinks that enhance resistance to void formation. Higher helium production during irradiation appears to shorten the incubation period for void formation. The effects of helium on steady state void swelling behavior, however, remain unknown
A Combine On-Line Acoustic Flowmeter and Fluorocarbon Coolant Mixture Analyzer for The ATLAS Silicon Tracker
An upgrade to the ATLAS silicon tracker cooling control system may require a
change from C3F8 (octafluoro-propane) to a blend containing 10-30% of C2F6
(hexafluoro-ethane) to reduce the evaporation temperature and better protect
the silicon from cumulative radiation damage with increasing LHC luminosity.
Central to this upgrade is a new acoustic instrument for the real-time
measurement of the C3F8/C2F6 mixture ratio and flow. The instrument and its
Supervisory, Control and Data Acquisition (SCADA) software are described in
this paper. The instrument has demonstrated a resolution of 3.10-3 for
C3F8/C2F6 mixtures with ~20%C2F6, and flow resolution of 2% of full scale for
mass flows up to 30gs-1. In mixtures of widely-differing molecular weight (mw),
higher mixture precision is possible: a sensitivity of < 5.10-4 to leaks of
C3F8 into the ATLAS pixel detector nitrogen envelope (mw difference 160) has
been seen. The instrument has many potential applications, including the
analysis of mixtures of hydrocarbons, vapours for semi-conductor manufacture
and anaesthesia
Ab Initio Study of Screw Dislocations in Mo and Ta: A new picture of plasticity in bcc transition metals
We report the first ab initio density-functional study of screw
dislocations cores in the bcc transition metals Mo and Ta. Our results suggest
a new picture of bcc plasticity with symmetric and compact dislocation cores,
contrary to the presently accepted picture based on continuum and interatomic
potentials. Core energy scales in this new picture are in much better agreement
with the Peierls energy barriers to dislocation motion suggested by
experiments.Comment: 3 figures, 3 table
Interatomic Forces and Atomic Structure of Grain Boundaries in Copper-Bismuth Alloys
The many-body empirical potentials that describe atomic interactions in the copper-bismuth system were constructed using both experimental data and physical quantities obtained by ab initio full-potential linear muffin-tin orbital calculations for a metastable Cu3Bi compound. These potentials were then used to calculate the structure of a grain boundary in copper containing bismuth, which was at the same time studied by high-resolution electron microscopy (HREM). Excellent agreement between the calculated and observed structures is shown by comparing a through-focal series of observed and calculated images. This agreement validates the constructed potentials, which can be used with a high confidence to investigate the structure and properties of other grain boundaries in this alloy system. Furthermore, this study shows, that HREM combined with computer modeling employing realistic empirical potentials can decipher with great accuracy the structure of boundaries containing multiple atomic species
- …