630 research outputs found
Event Rates for Off Axis NuMI Experiments
Neutrino interaction rates for experiments placed off axis in the NuMI beam are calculated. Primary proton beam energy is 120 GeV and four locations at 810 km from target and 6, 12, 30 and 40 km off axis are considered. This report is part of the Joint FNAL/BNL Future Long Baseline Neutrino Oscillation Experiment Study
Learned versus Hand-Designed Feature Representations for 3d Agglomeration
For image recognition and labeling tasks, recent results suggest that machine
learning methods that rely on manually specified feature representations may be
outperformed by methods that automatically derive feature representations based
on the data. Yet for problems that involve analysis of 3d objects, such as mesh
segmentation, shape retrieval, or neuron fragment agglomeration, there remains
a strong reliance on hand-designed feature descriptors. In this paper, we
evaluate a large set of hand-designed 3d feature descriptors alongside features
learned from the raw data using both end-to-end and unsupervised learning
techniques, in the context of agglomeration of 3d neuron fragments. By
combining unsupervised learning techniques with a novel dynamic pooling scheme,
we show how pure learning-based methods are for the first time competitive with
hand-designed 3d shape descriptors. We investigate data augmentation strategies
for dramatically increasing the size of the training set, and show how
combining both learned and hand-designed features leads to the highest
accuracy
An Advance Study of Coveriance Structure
Not availabl
Beam-Based Alignment of the NuMI Target Station Components at FNAL
The Neutrinos at the Main Injector (NuMI) facility is a conventional
horn-focused neutrino beam which produces muon neutrinos from a beam of mesons
directed into a long evacuated decay volume. The relative alignment of the
primary proton beam, target, and focusing horns affects the neutrino energy
spectrum delivered to experiments. This paper describes a check of the
alignment of these components using the proton beam.Comment: higher resolution figures available on Fermilab Preprint Server (see
SPIRES entry), accepted for publication in Nucl. Instr. and Meth.
Experiment Simulation Configurations Used in DUNE CDR
The LBNF/DUNE CDR describes the proposed physics program and experimental
design at the conceptual design phase. Volume 2, entitled The Physics Program
for DUNE at LBNF, outlines the scientific objectives and describes the physics
studies that the DUNE collaboration will perform to address these objectives.
The long-baseline physics sensitivity calculations presented in the DUNE CDR
rely upon simulation of the neutrino beam line, simulation of neutrino
interactions in the far detector, and a parameterized analysis of detector
performance and systematic uncertainty. The purpose of this posting is to
provide the results of these simulations to the community to facilitate
phenomenological studies of long-baseline oscillation at LBNF/DUNE.
Additionally, this posting includes GDML of the DUNE single-phase far detector
for use in simulations. DUNE welcomes those interested in performing this work
as members of the collaboration, but also recognizes the benefit of making
these configurations readily available to the wider community.Comment: 9 pages, 4 figures, configurations in ancillary file
- …