18 research outputs found

    Nylon 6 and nylon 6,6 micro- and nanoplastics: a first example of their accurate quantification, along with polyester (PET), in wastewater treatment plant sludges

    Get PDF
    A novel procedure for nylon 6 and nylon 6,6 polyamide (PAs) microplastics (MPs) quantification is described for the first time. The overall procedure, including quantification of poly(ethylene terephthalate) (PET), was tested on wastewater treatment plant (WWTP) sludges. The three polymers account for the largest global share of synthetic textile microfibers, being possibly the most common MPs released upon laundering in urban wastewaters. Therefore, measuring their content in WWTP sludges may provide an accurate picture of the potential risks associated with both the inflow of these MPs in natural water bodies and the practice of using WWTP sludges as agricultural soil amendment. The novel procedure involves PAs depolymerization by acid hydrolysis followed by derivatization of the monomers 6-aminohexanoic acid (AHA) and hexamethylene diamine (HMDA) with a fluorophore. Reversed-phase HPLC analysis with fluorescence detection results in high sensitivities for both AHA (LOD = 8.85·10–4 mg/L, LOQ = 3.73·10–3 mg/L) and HMDA (LOD = 2.12·10–4, LOQ = 7.04·10–4 mg/L). PET quantification involves depolymerization, in this case by alkaline hydrolysis, followed by HPLC analysis of its comonomer terephthalic acid. Eight sludge samples from four WWTPs in Italy showed contamination in the 29.3–215.3 ppm and 10.6–134.6 ppm range for nylon 6 and nylon 6,6, respectively, and in the 520–1470 ppm range for PET

    A Systematic Study on the Degradation Products Generated from Artificially Aged Microplastics

    Get PDF
    Most of the analytical studies focused on microplastics (MPs) are based on the detection and identification of the polymers constituting the particles. On the other hand, plastic debris in the environment undergoes chemical and physical degradation processes leading not only to mechanical but also to molecular fragmentation quickly resulting in the formation of leachable, soluble and/or volatile degradation products that are released in the environment. We performed the analysis of reference MPs–polymer micropowders obtained by grinding a set of five polymer types down to final size in the 857–509 μm range, namely high‐ and low‐density polyethylene, polystyrene (PS), polypropylene (PP), and polyethylene terephthalate (PET). The reference MPs were artificially aged in a solar‐box to investigate their degradation processes by characterizing the aged (photo‐oxidized) MPs and their low molecular weight and/or highly oxidized fraction. For this purpose, the artificially aged MPs were subjected to extraction in polar organic solvents, targeting selective recovery of the low molecular weight fractions generated during the artificial aging. Analysis of the extractable fractions and of the residues was carried out by a multi‐technique approach combining evolved gas analysis–mass spectrometry (EGA–MS), pyrolysis–gas chromatography–mass spectrometry (Py–GC–MS), and size exclusion chromatography (SEC). The results provided information on the degradation products formed during accelerated aging. Up to 18 wt% of extractable, low molecular weight fraction was recovered from the photo‐aged MPs, depending on the polymer type. The photo‐degradation products of polyolefins (PE and PP) included a wide range of long chain alcohols, aldehydes, ketones, carboxylic acids, and hydroxy acids, as detected in the soluble fractions of aged samples. SEC analyses also showed a marked decrease in the average molecular weight of PP polymer chains, whereas cross‐linking was observed in the case of PS. The most abundant low molecular weight photo‐degradation products of PS were benzoic acid and 1,4‐benzenedicarboxylic acid, while PET had the highest stability towards aging, as indicated by the modest generation of low molecular weight species

    Polymer Identification and Specific Analysis (PISA) of Microplastic Total Mass in Sediments of the Protected Marine Area of the Meloria Shoals

    Get PDF
    Microplastics (MPs) quantification in benthic marine sediments is typically performed by time-consuming and moderately accurate mechanical separation and microscopy detection. In this paper, we describe the results of our innovative Polymer Identification and Specific Analysis (PISA) of microplastic total mass, previously tested on either less complex sandy beach sediment or less demanding (because of the high MPs content) wastewater treatment plant sludges, applied to the analysis of benthic sediments from a sublittoral area north-west of Leghorn (Tuscany, Italy). Samples were collected from two shallow sites characterized by coarse debris in a mixed seabed of Posidonia oceanica, and by a very fine silty-organogenic sediment, respectively. After sieving at <2 mm the sediment was sequentially extracted with selective organic solvents and the two polymer classes polystyrene (PS) and polyolefins (PE and PP) were quantified by pyrolysis-gas chromatography-mass spectrometry (Pyr-GC/MS). A contamination in the 8–65 ppm range by PS could be accurately detected. Acid hydrolysis on the extracted residue to achieve total depolymerization of all natural and synthetic polyamides, tagging of all aminated species in the hydrolysate with a fluorophore, and reversed-phase high performance liquid chromatography (HPLC) (RP-HPLC) analysis, allowed the quantification within the 137–1523 ppm range of the individual mass of contaminating nylon 6 and nylon 6,6, based on the detected amounts of the respective monomeric amines 6-aminohexanoic acid (AHA) and hexamethylenediamine (HMDA). Finally, alkaline hydrolysis of the residue from acid hydrolysis followed by RP-HPLC analysis of the purified hydrolysate showed contamination by polyethylene terephthalate (PET) in the 12.1–2.7 ppm range, based on the content of its comonomer, terephthalic acid

    New methodologies for the detection, identification, and quantification of microplastics and their environmental degradation by-products

    Get PDF
    Sampling, separation, detection, and characterization of microplastics (MPs) dispersed in natural water bodies and ecosystems is a challenging and critical issue for a better understanding of the hazards for the environment posed by such nearly ubiquitous and still largely unknown form of pollution. There is still the need for exhaustive, reliable, accurate, reasonably fast and cost efficient analytical protocols allowing the quantification not only of MPs, but also of nanoplastics (NPs) and of the harmful molecular pollutants that may result from degrading plastics. Here a set of newly developed analytical protocols, integrated with specialized techniques such as pyrolysis-gaschromatography-mass spectrometry (Py-GC/MS), for the accurate and selective determination of the polymers most commonly found as MPs polluting marine and freshwater sediments are presented. In addition, the results of an investigation on the low molecular weight volatile organic compounds (VOCs) released upon photo-oxidative degradation of microplastics highlight the important role of photoinduced fragmentation at a molecular level both as a potential source of hazardous chemicals and as accelerators of the overall degradation of floating or stranded plastic debris

    Sviluppo di nuovi protocolli analitici per la determinazione qualitativa e quantitativa di microplastiche in sedimenti marini e lacustri.

    No full text
    Nel presente lavoro di tesi è stata affrontata la problematica della determinazione quantitativa di materiale plastico a base etero polimerica in matrici ambientali sedimentarie. L’attività si inserisce in un ambito di crescente interesse scientifico considerando l’entità dell’inquinamento globale da rifiuti plastici di cui sono stati conclamati gli effetti negativi sugli ecosistemi. Tali effetti sono legati sia ad azioni dirette di tipo meccanico (soffocamento per ingestione o intrappolamento di organismi superiori), sia ad effetti indiretti derivanti dalle potenziali caratteristiche di adsorbimento, concentrazione, trasporto e rilascio di inquinanti tossici e persistenti. In particolare le cosiddette microplastiche, consistenti in particelle polimeriche di dimensioni micrometriche disperse nell’ambiente come tali (particelle primarie) o come prodotto di degradazione di rifiuti plastici dai quali si possono poi originare detriti di dimensioni microscopiche per frammentazione legata ai processi di degradazione ossidativa, possono acuire i citati effetti ambientali negativi. Le microplastiche primarie possono essere disperse negli ecosistemi attraverso, per esempio, il washout degli scarichi domestici in ragione del loro utilizzo come esfolianti nei prodotti cosmetici e nei detergenti, o come fibre tessili sintetiche. Le metodiche di analisi delle microplastiche in matrici ambientali, ed in particolare nei sedimenti marini e lacustri, si sono avvalse soprattutto di tecniche di separazione e analisi morfologica e composizionale delle singole particelle. Le tecniche di separazione più utilizzate sono riconducibili alla semplice flottazione che consente la separazione in funzione della densità. Nella letteratura scientifica sono reperibili numerosi contributi relativi a configurazioni diverse dei sistemi di flottazione che si differenziano per geometria degli apparati, per le condizioni statiche o dinamiche, per la tipologia delle soluzioni saline a densità modulabile. E’ intuibile tuttavia che le dimensioni delle particelle da separare, le loro caratteristiche strutturali (densità) e morfologiche, le caratteristiche superficiali, che possono essere a loro volta condizionate dai processi di degradazione ossidativa, non consentono una determinazione sufficientemente accurata delle concentrazioni delle singole componenti polimeriche nei campioni ambientali. Recentemente presso il Dipartimento di Chimica e Chimica Industriale dell’Università di Pisa sono stati proposti metodi di determinazione in grado di integrare le informazioni, ottenibili mediante le suddette tecniche di separazione fisica, relative al contenuto di singoli frammenti di polimeri sintetici in campioni ambientali. Tali metodi sono basati sull'estrazione selettiva con solventi organici di campioni di sedimenti per l’identificazione e quantificazione di polimeri idrocarburici di largo impiego come polietilene (PE), propilene (PP) e polistirene (PS), nonché dei loro prodotti di degradazione a basso e medio peso molecolare. Tali matrici polimeriche, essendo quelle più utilizzate nel settore degli imballaggi e nei prodotti monouso, sono anche i più soggetti alla dispersione ambientale andando a costituire, secondo i dati disponibili da vari studi, una delle sorgenti principali di microplastiche. Meno noti sono invece i livelli di contaminazione da parte di altre classi di polimeri largamente utilizzati nella produzione di manufatti, di formulazioni di prodotti di largo consumo e di fibre tessili. Per le microplastiche derivanti dagli eteropolimeri (polimeri a matrice idrocarburica ma contenenti eteroatomi) non esiste una metodica di caratterizzazione/quantificazione adeguata, ma ci si avvale soprattutto della separazione e conta visiva, con microscopio, delle particelle e frammenti contaminanti presenti in un certo volume/peso di campione (sedimento o materiale ricavato da filtrazione di acque marine o lacustri). Tra questi devono essere considerati soprattutto i poliesteri di sintesi, il principale rappresentante dei quali è il polietilentereftalato (PET), prodotto attualmente in quantità dell’ordine delle 30 106 tonnellate annue. La determinazione quantitativa del PET in matrici ambientali risente delle difficoltà che normalmente sono incontrate nella analisi delle microplastiche, soprattutto di quelle con dimensioni inferiori ai 200 micrometri e con densità maggiori delle fasi acquose normalmente utilizzate negli studi basati su separazioni densimetriche. Anche il ricorso a semplici tecniche di estrazione solido-liquido o liquido-liquido del tipo impiegato per l’analisi di microplastiche idrocarburiche sono di fatto impraticabili nel caso del PET data la sua insolubilità in solventi organici di uso comune. È necessario inoltre considerare la genesi del potenziale inquinamento in forma di micro detriti da parte del PET. Il poliestere ha una scarsa propensione alla degradazione ambientale che potrebbe essere indotta da meccanismi di tipo idrolitico e/o foto ossidativo. Contrariamente quindi alle poliolefine ed al polistirene, nel caso del PET è ragionevole supporre che la presenza nei comparti ambientali di frammenti di dimensioni microscopiche derivanti dalla degradazione di oggetti macroscopici sia più limitata, mentre sono più facilmente reperibili i manufatti tal quali, bottiglie in particolare. Tuttavia l’utilizzo marcato di PET come fibra tessile può essere considerato esso stesso una sorgente importante di inquinamento diffuso con particelle sub microscopiche. Di tale forma di inquinamento, nonostante alcuni recenti studi, non è stata ancora accertata l’intensità negli ambienti naturali e nei corpi idrici recettori di scarichi domestici. In alcuni casi, spiagge marine in particolare, potrebbero risultare altrettanto non trascurabili i meccanismi di degradazione meccanica che, per abrasione di manufatti dispersi, possono produrre micro frammenti secondari di PET. Sulla base di tali considerazioni, l’attività sperimentale è stata focalizzata alla definizione di un protocollo analitico per la identificazione e quantificazione di PET microparticellare in matrici ambientali mediante l’analisi quantitativa del monomero, acido tereftalico (TPA), ottenuto mediante depolimerizzazione completa del polimero. La prima parte di questo lavoro di tesi è stata incentrata sull'ottimizzazione dei parametri di idrolisi di manufatti a base di PET (temperatura, tempo di reazione, rapporto ponderale dei reagenti, scelta dei catalizzatori) rispetto ai dati reperibili in letteratura. Ulteriori prove sono state condotte addizionando quantitativi noti di PET a matrici solide simulanti campioni di sedimento. Contestualmente sono state verificate l’accuratezza e i limiti di rilevabilità del TPA mediante analisi HPLC in fase inversa con rivelatore UV e le condizioni migliori di preparazione di campioni reali per limitare le interferenze da altre componenti organiche di natura aromatica a basso peso molecolare. Infine sono state condotte prove preliminari su campioni di sedimento provenienti da due siti di campionamento, rappresentativi di un ambiente lacustre e uno di spiaggia marina ad elevata contaminazione da detriti plastici. I risultati ottenuti, sebbene nei limiti del numero di campioni analizzati, hanno consentito di apprezzare con elevata significatività concentrazioni ascrivibili al PET dell’ordine di 3-25 microgrammi kilo-1 di sedimento. E’ da sottolineare infine, che la procedura definita nel presente lavoro può essere utilizzata, abbinata ad altre tecniche analitiche quali la GC/MS e la pirolisi-GC/MS, per la determinazione di altre componenti polimeriche quali le poliammidi o altri poliesteri e comunque estesa anche per l’analisi altre matrici (acque di superficie e marine, prodotti alimentari, ecc., oltre ai sedimenti

    Microplastics in fish meal: contamination level analyzed by polymer type, including polyester (PET), polyolefins, and polystyrene

    No full text
    Fish meal (FM) is an industrial product, mainly obtained from whole wild-caught fish, that is used as a high protein feedstuff component in aquaculture and intensive animal farming. Contamination of FM by microplastics (MPs), the synthetic polymer particles known to be nearly ubiquitous in the marine environment, is a likely consequence of their ingestion by zooplankton and other small marine animals that through the food chain end up in the fish commercialized not only for direct human consumption but also for the industrial production of FM. Unfortunately, analytical tools for quantifying contamination of FM by synthetic polymers are not available. A newly developed procedure described here allows quantification of the total amounts of polyolefins (including ethene and propene homo- and copolymers), polystyrene (PS), and poly(ethylene terephthalate) (PET), respectively, in FM. The multi-step procedure involves a sequence of solvent extractions, hydrolytic treatments to remove the biogenic matrix mainly consisting of proteins and some lipids, and selective depolymerizations for PET. The gravimetric and SEC-UV techniques employed for the quantification of polyolefins and PS, respectively, only allowed to estimate their concentration in FM at around or below 100 mg/kg each, a more accurate quantification being prevented by the interference from the organic matrix and, in the case of polyolefins, by the limited sensitivity of the quantification by gravimetry. On the other hand, the contamination by PET MPs could accurately be quantified at 12.9 mg/kg based on the dry FM mass. Ways to overcome the sensitivity limitations for PS and polyolefins by using e.g. pyrolysis-GC/MS are highlighted

    Accurate Quantification of Poly(Ethylene Terephthalate) Micro- and Nanoparticles in Marine and Freshwater Sediments

    No full text
    Microplastics are ubiquitous pollutants in marine and freshwater bodies. Poly(ethylene terephthalate) microfibers (PMFs) are among the main primary microplastics (as-produced polymer microparticles). Released in large amounts in laundry wastewaters, PMFs end up in freshwater and marine sediments due to their high density. PMFs are potentially hazardous pollutants for ecosystems and human health, being a deceiving food source for animal organisms at the base of the food chain (e.g. sediment and water filtrators, including edible shellfish and small crustaceans). This study describes a simple, sensitive and versatile procedure for quantifying the total mass of PET micro- and nano-particles in sediments. The procedure involves aqueous alkaline PET depolymerization with phase transfer catalysis, oxidation and fractionations to remove interfering species and pre-concentrate the terephthalic acid (TPA) monomer, and TPA quantification by reversed-phase HPLC. Recovery of TPA from a model sediment spiked with 800 ppm PET micropowder was 98.2 %, with limits of detection/quantification LOD=17.2 µg/kg and LOQ=57.0 µg/kg. Analyses of sandy sediments from a marine beach in Tuscany, Italy, showed contamination in the 370-460 µg/kg range, suggesting that a not negligible fraction of PET microfibers released in surface waters ends up in shore sediments

    DALL’ACIDIFICAZIONE DEI MARI AL TEMA DELLE MICROPLASTICHE: ATTIVITÀ LABORATORIALI E INTERATTIVE PER TUTTI

    No full text
    In questo articolo saranno descritte alcune attività interattive e laboratori esplorativi sul tema “La Chimica e il mare” progettati e realizzati in diversi ambiti non formali: dai laboratori per bambini, presso il Museo, sull’effetto dell’acidificazione dei mari sui coralli e sulle conchiglie, alle attività di divulgazione delle recenti ricerche nel campo delle microplastiche durante la Notte Europea dei Ricercatori 2019. Gli autori ringraziano il progetto “Il «marine litter»: dall’analisi del problema a possibili soluzioni per una economia circolare” (PRA 2017-2018)

    Marine sponges as bioindicators of pollution by synthetic microfibers in Antarctica

    No full text
    : Different marine sponge species from Tethys Bay, Antarctica, were analyzed for contamination by polyester and polyamide microplastics (MPs). The PISA (Polymer Identification and Specific Analysis) procedure was adopted as it provides, through depolymerization and HPLC analysis, highly sensitive mass-based quantitative data. The study focused on three analytes resulting from the hydrolytic depolymerization of polyesters and polyamides: terephthalic acid (TPA), 6-aminohexanoic acid (AHA), and 1-6-hexanediamine (HMDA). TPA is a comonomer found in the polyesters poly(ethylene terephthalate) (PET) and poly(butylene adipate co terephthalate) (PBAT), and in polyamides such as poly(1,4-p-phenylene terephthalamide) (KevlarTM and TwaronTM fibers) and poly(hexamethylene terephthalamide) (nylon 6 T). AHA is the monomer of nylon 6. HMDA is a comonomer of the aliphatic nylon 6,6 (HMDA-co-adipic acid) and of semi-aromatic polyamides such as, again, nylon 6 T (HMDA-co-TPA). Except for the biodegradable PBAT, these polymers exhibit high to extreme mechanical, thermal and chemical resistance. Indeed, they are used as technofibers in protective clothing able to withstand extreme conditions as those typical of Antarctica. Of the two amine monomers, only HMDA was found above the limit of quantification, and only in specimens of Haliclona (Rhizoniera) scotti, at a concentration equivalent to 27 μg/kg of nylon 6,6 in the fresh sponge. Comparatively higher concentrations, corresponding to 2.5-4.1 mg/kg of either PBAT or PPTA, were calculated from the concentration of TPA detected in all sponge species. Unexpectedly, TPA did not originate from PET (the most common textile fiber) as it was detected in the acid hydrolysate, whereas the PISA procedure results in effective PET depolymerization only under alkaline conditions. The obtained results showed that sponges, by capturing and concentrating MPs from large volumes of filtered marine waters, may be considered as effective indicators of the level and type of pollution by MPs and provide early warnings of increasing levels of pollution even in remote areas

    Understanding the Source, Distribution, and Fate of Micro- and Nanoplastics in Natural Water Bodies

    No full text
    Sampling, separation, detection and characterization of micro- and nanoplastics dispersed natural water bodies and ecosystems is a challenging and critical issue for a better understanding of the hazards for the environment posed by such ubiquitous and still nearly unknown form of pollution. There is still the need for cost efficient, exhaustive, reliable and accurate analytical protocols allowing the quantification of these pollutants and of the toxic pollutants that they are known to act as concentrators for. The first results of a broad range research aiming at setting up new and effective methodologies and analytical protocols for the accurate determination of different polymeric pollutants in marine and freshwater sediments will be presented. In addition, the first results of a follow up investigation on the low molecular weight volatile organic compounds released upon photo-oxidative degradation of microplastics will also be presented, and their significance for a better understanding of the fate of floating or stranded plastic debris will be discusse
    corecore