2 research outputs found
An openâsource, expertâdesigned decision tree application to support accurate diagnosis of myeloid malignancies
Accurate, reproducible diagnoses can be difficult to make in haemato-oncology due to multi-parameter clinical data, complex diagnostic criteria and time-pressured environments. We have designed a decision tree application (DTA) that reflects WHO diagnostic criteria to support accurate diagnoses of myeloid malignancies. The DTA returned the correct diagnoses in 94% of clinical cases tested. The DTA maintained a high level of accuracy in a second validation using artificially generated clinical cases. Optimisations have been made to the DTA based on the validations, and the revised version is now publicly available for use at http://bit.do/ADAtool
An open-source, expert-designed decision tree application to support accurate diagnosis of myeloid malignancies
Accurate, reproducible diagnoses can be difficult to make in haemato-oncology due to multi-parameter clinical data, complex diagnostic criteria and time-pressured environments. We have designed a decision tree application (DTA) that reflects WHO diagnostic criteria to support accurate diagnoses of myeloid malignancies. The DTA returned the correct diagnoses in 94% of clinical cases tested. The DTA maintained a high level of accuracy in a second validation using artificially generated clinical cases. Optimisations have been made to the DTA based on the validations, and the revised version is now publicly available for use at http://bit.do/ADAtool.The article is available via Open Access. Click on the 'Additional link' above to access the full-text.Unknow