244 research outputs found

    Hyperpolarized 13C-pyruvate MRI detects real-time metabolic flux in prostate cancer metastases to bone and liver: a clinical feasibility study.

    Get PDF
    BackgroundHyperpolarized (HP) 13C-pyruvate MRI is a stable-isotope molecular imaging modality that provides real-time assessment of the rate of metabolism through glycolytic pathways in human prostate cancer. Heretofore this imaging modality has been successfully utilized in prostate cancer only in localized disease. This pilot clinical study investigated the feasibility and imaging performance of HP 13C-pyruvate MR metabolic imaging in prostate cancer patients with metastases to the bone and/or viscera.MethodsSix patients who had metastatic castration-resistant prostate cancer were recruited. Carbon-13 MR examination were conducted on a clinical 3T MRI following injection of 250 mM hyperpolarized 13C-pyruvate, where pyruvate-to-lactate conversion rate (kPL) was calculated. Paired metastatic tumor biopsy was performed with histopathological and RNA-seq analyses.ResultsWe observed a high rate of glycolytic metabolism in prostate cancer metastases, with a mean kPL value of 0.020 ± 0.006 (s-1) and 0.026 ± 0.000 (s-1) in bone (N = 4) and liver (N = 2) metastases, respectively. Overall, high kPL showed concordance with biopsy-confirmed high-grade prostate cancer including neuroendocrine differentiation in one case. Interval decrease of kPL from 0.026 at baseline to 0.015 (s-1) was observed in a liver metastasis 2 months after the initiation of taxane plus platinum chemotherapy. RNA-seq found higher levels of the lactate dehydrogenase isoform A (Ldha,15.7 ± 0.7) expression relative to the dominant isoform of pyruvate dehydrogenase (Pdha1, 12.8 ± 0.9).ConclusionsHP 13C-pyruvate MRI can detect real-time glycolytic metabolism within prostate cancer metastases, and can measure changes in quantitative kPL values following treatment response at early time points. This first feasibility study supports future clinical studies of HP 13C-pyruvate MRI in the setting of advanced prostate cancer

    A Regional Bolus Tracking and Real-time B1_1 Calibration Method for Hyperpolarized 13^{13}C MRI

    Full text link
    Purpose: Acquisition timing and B1_1 calibration are two key factors that affect the quality and accuracy of hyperpolarized 13^{13}C MRI. The goal of this project was to develop a new approach using regional bolus tracking to trigger Bloch-Siegert B1_1 mapping and real-time B1_1 calibration based on regional B1_1 measurements, followed by dynamic imaging of hyperpolarized 13C^{13}C metabolites in vivo. Methods: The proposed approach was implemented on a system which allows real-time data processing and real-time control on the sequence. Real-time center frequency calibration upon the bolus arrival was also added. The feasibility of applying the proposed framework for in vivo hyperpolarized 13^{13}C imaging was tested on healthy rats, tumor-bearing mice and a healthy volunteer on a clinical 3T scanner following hyperpolarized [1-13^{13}C]pyruvate injection. Multichannel receive coils were used in the human study. Results: Automatic acquisition timing based on either regional bolus peak or bolus arrival was achieved with the proposed framework. Reduced blurring artifacts in real-time reconstructed images were observed with real-time center frequency calibration. Real-time computed B1_1 scaling factors agreed with real-time acquired B1_1 maps. Flip angle correction using B1_1 maps results in a more consistent quantification of metabolic activity (i.e, pyruvate-to-lactate conversion, kPL_{PL}). Experiment recordings are provided to demonstrate the real-time actions during the experiment. Conclusion: The proposed method was successfully demonstrated on animals and a human volunteer, and is anticipated to improve the efficient use of the hyperpolarized signal as well as the accuracy and robustness of hyperpolarized 13^{13}C imaging

    Model-Constrained Reconstruction Accelerated With Fourier-Based Undersampling for Hyperpolarized [1-13C] Pyruvate Imaging

    Get PDF
    PURPOSE: Model-constrained reconstruction with Fourier-based undersampling (MoReFUn) is introduced to accelerate the acquisition of dynamic MRI using hyperpolarized [1- METHODS: The MoReFUn method resolves spatial aliasing using constraints introduced by a pharmacokinetic model that describes the signal evolution of both pyruvate and lactate. Acceleration was evaluated on three single-channel data sets: a numerical digital phantom that is used to validate the accuracy of reconstruction and model parameter restoration under various SNR and undersampling ratios, prospectively and retrospectively sampled data of an in vitro dynamic multispectral phantom, and retrospectively undersampled imaging data from a prostate cancer patient to test the fidelity of reconstructed metabolite time series. RESULTS: All three data sets showed successful reconstruction using MoReFUn. In simulation and retrospective phantom data, the restored time series of pyruvate and lactate maintained the image details, and the mean square residual error of the accelerated reconstruction increased only slightly (\u3c 10%) at a reduction factor up to 8. In prostate data, the quantitative estimation of the conversion-rate constant of pyruvate to lactate was achieved with high accuracy of less than 10% error at a reduction factor of 2 compared with the conversion rate derived from unaccelerated data. CONCLUSION: The MoReFUn technique can be used as an effective and reliable imaging acceleration method for metabolic imaging using hyperpolarized [1

    A Metabolite Specific 3D Stack-of-Spiral bSSFP Sequence for Improved Lactate Imaging in Hyperpolarized [1-13^{13}C]Pyruvate Studies on a 3T Clinical Scanner

    Full text link
    Purpose: The balanced steady-state free precession sequence has been previously explored to improve the efficient use of non-recoverable hyperpolarized 13^{13}C magnetization, but suffers from poor spectral selectivity and long acquisition time. The purpose of this study was to develop a novel metabolite-specific 3D bSSFP ("MS-3DSSFP") sequence with stack-of-spiral readouts for improved lactate imaging in hyperpolarized [1-13^{13}C]pyruvate studies on a clinical 3T scanner. Methods: Simulations were performed to evaluate the spectral response of the MS-3DSSFP sequence. Thermal 13^{13}C phantom experiments were performed to validate the MS-3DSSFP sequence. In vivo hyperpolarized [1-13^{13}C]pyruvate studies were performed to compare the MS-3DSSFP sequence with metabolite specific gradient echo ("MS-GRE") sequences for lactate imaging. Results: Simulations, phantom and in vivo studies demonstrate that the MS-3DSSFP sequence achieved spectrally selective excitation on lactate while minimally perturbing other metabolites. Compared with MS-GRE sequences, the MS-3DSSFP sequence showed approximately a 2.5-fold SNR improvement for lactate imaging in rat kidneys, prostate tumors in a mouse model and human kidneys. Conclusions: Improved lactate imaging using the MS-3DSSFP sequence in hyperpolarized [1-13^{13}C]pyruvate studies was demonstrated in animals and humans. The MS-3DSSFP sequence could be applied for other clinical applications such as in the brain or adapted for imaging other metabolites such as pyruvate and bicarbonate
    corecore